
Benchmarking SPARQL Engines on Wikidata Queries
Peter F. Patel-Schneider

Abstract
Four open-source SPARQL engines are evaluated on three existing and one new benchmarks for
queries against Wikidata, a large community-built knowledge graph with wide usage. Of the engines
benchmarked—Blazegraph, MillenniumDB, QLever, and Virtuoso—QLever is the fastest. Blazegraph,
which is the SPARQL engine used in the official Wikidata Query Service, is significantly slower than
some other engines. All of the engines have deviations from the SPARQL standard.

1. Introduction

Wikidata [1] is a general-purpose, widely used “free and open knowledge base” that “anyone can
edit” with over 117 million items as of May 2025 [2]. Wikidata is similar to other large knowledge
graphs such as the Google Knowledge Graph. Wikidata is built on Wikibase [3]—open-source
software that supports collaborative editing of linked knowledge graphs.

There are several ways to access Wikidata. One of these, and the most powerful, is to run
SPARQL queries [4] against the RDF [5] dump of Wikidata [6]. This dump encodes all the
features of Wikibase knowledge graphs into RDF, permitting advanced querying of Wikidata.
Querying Wikidata in this way requires users to often know the details of the encoding and thus
it may be difficult to create correct queries.

There is an official query service for Wikidata at https://query.wikidata.org/ that runs
SPARQL queries against an RDF encoding of Wikidata. The service keeps a current version of
Wikidata in RDF by transformimg edits made to Wikidata into RDF updates and maintaining
an RDF graph corresponding to the information currently in Wikidata. The query service is at
times overloaded and cannot keep up with the updates. As well, queries run in the service often
time out. These are both due to the SPARQL engine that the query service uses—Blazegraph
[7], which is an older, unmaintained SPARQL query engine.

This has led some users to use other services that run SPARQL queries against Wikidata,
particularly a service provided by a team in the University of Freiburg, which is available at
https://qlever.cs.uni-freiburg.de/wikidata. This service uses QLever [8]—a modern SPARQL
engine. The version of Wikidata that the server uses comes from dumps of Wikidata into RDF
that are provided weekly and thus may lag behind the current information in Wikidata.

The problems with the official Wikidata query service have also resulted in a significant change
to it. The service no longer evaluates queries against the entire RDF dump of Wikidata. Instead
there are two services, one for the scholarly publication data in Wikidata and one for the rest
of Wikidata. This split was done to lessen the update load on the service, because the update
stream will be split into two, and may also lessen the query load, because queries can be directed
to the service that provides the information required. Queries that need information from both
service will need to be rewritten to use SPARQL federation. This will put an added burden on
users and may end up significantly reducing the gains because federated queries can be expensive
to evaluate.

Wikidata is growing rapidly [9] and even with the split, use of Blazegraph will continue to be
a problem [10]. A better SPARQL engine is needed to allow for future growth in Wikidata.

Wikidata Workshop
email: pfpschneider@gmail.com (P. F. Patel-Schneider)

© 2025 This work is licensed under a “CC BY 4.0” license.

https://query.wikidata.org/
https://qlever.cs.uni-freiburg.de/wikidata
mailto:pfpschneider@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Anecdotal evidence shows that QLever is much faster than Blazegraph on many Wikidata
queries. There are queries where QLever is several orders of magnitude faster than Blazegraph.
Similar evidence shows that other modern SPARQL query engines are also much faster than
Blazegraph on some Wikidata queries. There are some first-party benchmarks showing that
modern SPARQL engines, including MillenniumDB [11] and QLever [8, 12] are faster than
Blazegraph on the Wikidata RDF dump, but no large third-party comparison of the engines.

To better test the performance of modern SPARQL engines over Blazegraph an effort to
benchmark the query performance of several open-source SPARQL engines on the entire Wikidata
RDF dump was undertaken. This is only a part of what is needed in a replacement for Wikidata
but is an important part. The analysis of the benchmark results here was designed to be more
useful in determining overall performance of a service and not so much designed to determine
expected performance as seen by users of the service.

Three open-source systems that were known to be able to reasonably load Wikidata RDF
dumps and run SPARQL queries on them were selected. These systems are MillenniumDB [11],
QLever, and Virtuoso Open Source [13]. Three existing Wikidata benchmarks were selected
and a new benchmark based on Scholia [14] was created. An October 2024 RDF dump of
Wikidata was loaded into each of the modern engines and Blazegraph. The benchmarks were
run on all four engines and their performance is reported and analyzed here. More information
about the benchmarking, including the benchmarks and all code used, is avilable at https:
//github.com/wikius/benchmark-wikidata.

The closest third-party study of SPARQL engines on Wikidata was performed by Lam et al
[15]. They tested the query performance of several SPARQL engines, including an earlier version
of QLever, on Wikidata, using 328 sample queries. This early version of QLever performed poorly
in their testing. They did not test any of the other performant open-source SPARQL engines
and QLever has undergone major improvements since their study.

2. Wikidata in RDF

There is an encoding of Wikidata into RDF, and RDF dumps of Wikidata are made weekly.
There are two different kinds of dumps. One kind includes only truthy statements (triples), that
is, statements without their qualifiers and other information, no deprecated statements, and
normal rank statements only if there is no preferred rank statement for the same subject and
predicate. The other kind of dump is a full dump that has both truthy statements and a complex
encoding of all statements that includes the rank, qualifers, and other information about each
statement. As of October 2024, the full dumps of Wikidata had about 20 billion triples. The full
dumps in Turtle [16] were over 100GB compressed and over 850GB uncompressed.

There are public services that evaluate SPARQL queries against full dumps of Wikidata for
all four of the SPARQL engines selected. The official service, that uses Blazegraph, has the
most up-to-date information, generally lagging by only a few seconds as updates to Wikidata are
processed and then incorporated into its RDF graph. The QLever service uses similar information
and also lags only slightly. The QLever service lags by around a week, as it can process the
weekly dumps in well under a day. The MillenniumDB service uses the weekly dumps and thus
lags by somewhat over a week. The data used by the Virtuoso service is only updated irregularly
and can lag by months.

3. The Benchmarks

Three existing benchmarks were selected. These were chosen to provide a varied set of queries
with different selection criteria and difficulty.

https://github.com/wikius/benchmark-wikidata
https://github.com/wikius/benchmark-wikidata


WGPB [17] consists of 50 instantiations of 17 simple1 query patterns. A pattern is, in essence,
a small graph whose nodes are shared variables in a set of SPARQL BGPs. Each pattern is
instantiated by picking Wikidata properties for each edge and constructing the BGPs, which
are then expanded into a full SPARQL query. Finally a LIMIT 1000 is added, resulting in 850
SPARQL queries.

WDBench [18] consists of query fragments from the anonymized Wikidata SPARQL Logs2

evaluated by the Wikidata Query Service in 2017 and 2018 [19]. The queries used were chosen
from those that had timed out. The BGPs, property paths, and some other portions of the
queries were extracted and categorized into those with a single BGP (280 queries), those with
multiple BGPs (681 queries), those with OPTIONAL clauses (498 queries), those with property
paths (660 queries), and those that did not fit into any of the above categories (539 queries).
Each of these five sets of query fragments are treated as a single benchmark here.

These query fragments have to be expanded into full queries by adding the SELECT portion.
The query fragments do not retain FILTER or other limits on the size of the answer set and can
return very large answer sets. The original benchmarking thus added a LIMIT 100000 to limit
the number of answers. To stress modern SPARQL engines this benchmarking arbitrarily uses
instead LIMIT 10000000.

WDQS [12] consists of a set of 298 queries extracted from Wikidata Query Service logs. This
benchmark was used to evaluate the comparative performance of several SPARQL engines.
Several of the queries return hundreds of millions of answers. For these a LIMIT 10000000 is
added to the query here.

A new benchmark was created from the queries used by the Scholia [14] interface to Wikidata.
This interface is designed to show information related to scholarly articles. A request for Scholia
information is in the form of one, usually, but sometimes more, Wikidata identifiers. The class(es)
of these identifier(s) in Wikidata are determined and a template HTML document is selected
based on the class(es). There is a default template if there is no template specifically for the
type(s). The template document has sections that are replaced by information constructed from
the results of SPARQL queries constructed by inserting the identifier(s) in a query template.

For example, a Scholia request for Wikidata identifier Q39246, the item for Richard Feynman,
would query Wikidata to find that the item with this identifier is a human and use the author
document template to determine what queries to construct and how to create the HTML document
partly shown in Figure 1.

Some of the Scholia queries are difficult for the Wikidata Query Service to evaluate and queries
time out, resulting in documents with errors in them. Further, running these difficult queries
puts a significant load on the Wikidata Query Service. The group maintaining Scholia is thus
interested in determining whether a different SPARQL engine would do better.

The advantage of using Scholia to construct a benchmark is that many queries can be
constructed from the templates. However, there are only about 375 query templates, and some of
the templates are similar to each other, so there is not a wide variety of different queries. Another
problem with using Scholia query templates for benchmarking is that they use extensions to
SPARQL that are specific to Blazegraph.

The Scholia benchmark was constructed by determining the query templates for 33 different
classes. The query templates were then turned into standard SPARQL by expanding named
queries replacing the Wikidata Label Service with query fragments to determine English-language
labels, and making a few other, minor modifications. For each of these classes, five items belonging
to the class were determined. In a few cases these items were selected by hand but in most cases
the items are the first five answers to a query that returned instances of the class that had values

1A simple query here is one with only one SPARQL consruct or a small number of similar SPARQL constructs. A
complex query has several different SPARQL constructs.

2The logs of the Wikidata Query Service are considered to be private as they might contain personally-identifying
information so constructing public benchmarks from them is not easy.



Figure 1: Part of Scholia Page for Richard Feynman (Q39246)



for properties uses in one or more of the query templates.
Some of the templates are complex. For example, here is a query template for the author

document after conversion to standard SPARQL, edited to present better. The target: prefix
is instantiated with the URL for the Wikidata identifier being used.

SELECT ?year (count(?work) AS ?numb_of_publs) ?role WHERE {
{ SELECT (str(?year_) AS ?year) (0 AS ?pp) ("_" AS ?role) WHERE {

?year_item wdt:P31 wd:Q577 .
?year_item wdt:P585 ?date .
BIND(year(?date) AS ?year_)
{ SELECT (min(?year_) AS ?e_year) (max(?year_) AS ?l_year) WHERE {

?work wdt:P50 target: .
?work wdt:P577 ?publ_date .
BIND(year(?publ_date) AS ?year_) } }

BIND(year(now())+1 AS ?next_year)
FILTER (?year_ >= ?e_year && ?year_ <= ?l_year) }

} UNION {
{ SELECT ?work (min(?years) AS ?year)

(count(?coauthors) AS ?numb_of_authors) ?author_numb WHERE {
?work (p:P50|p:P2093) ?author_statement .
?author_statement ps:P50 target: .
optional { ?author_statement pq:P1545 ?author_numb . }
?work (wdt:P50|wdt:P2093) ?coauthors .
?work wdt:P577 ?dates .
BIND(str(year(?dates)) AS ?years) . }

GROUP BY ?work ?author_numb }
BIND(COALESCE(if(?numb_of_authors = 1, ’Solo author’,

if(xsd:integer(?author_numb) = 1, ’First author’,
if(xsd:integer(?author_numb) = ?numb_of_authors,
’Last author’, ’Middle author’))), ’Unknown’) AS ?role)

} } GROUP BY ?year ?role ORDER BY ?year

A few queries returned large answer sets, which is not useful when constructing the final
document, so LIMIT clauses were added. A few queries had errors, which caused them to return
incorrect answer sets, and were fixed. All these changes were sent to the Scholia repository and
have been incorporated into it.

A query run then consists of instantiating each query template with each item and evaluating
the resultant query.

4. Running the Benchmarks

The benchmarks were all run on a machine with a Ryzen 9950X CPU, 192GB of main memory,
and fast NVMe SSD drives running the Fedora Linux distribution. MillenniumDB, QLever, and
Virtuoso were downloaded from their open-source repositories, using the version current as of 05
March 2025 for MillenniumDB, 22 March 2025 for QLever, and 19 March 2025 for Virtuoso.

They were compiled using scripts from the repositories. Blazegraph is run from a docker
image for the current version of Blazegraph because of issues with Java. This may slow down
Blazegraph by up to 10%, but probably only slows Blazegraph down a few percent. This possible
penalty does not affect the main conclusions of the evaluation.

Wikidata RDF dumps from late October 2024 were loaded into all four engines using settings
determined in consultation from developers where possible. Loading was relatively easy for
MillenniumDB, QLever, and Virtuoso and took less than a day for each, with QLever being
fastest at about 4.5 hours. Loading the dumps into Blazegraph took over 10 days and the first
try failed, probably due to a bug related to concurrent access to some data. As loading into
Blazegraph was difficult no attempt was made to use newer dumps of Wikidata.



Settings for the engines during benchmarking were determined in consultation from developers
where possible and set up so that about 3/4 of main memory was used by the engine. This is
more memory than is commonly allowed in the public Wikidata services but was chosen to better
reflect expected memory growth in the near future. The engines are allowed to use multiple
threads, but all except Blazegraph are only lightly threaded when querying.

Each query is run with a 10-minute timeout. This is larger than most public Wikidata services,
which generally use a 1-minute timeout, and was chosen to see behavior of the engines on a
longer timeframe and to provide some indication about behavior in future with faster computers.

Each benchmark run is performed from a cold start, with system caches emptied, and timed
after any startup done by the engine. This means that any engine that defers startup until the
first query is evaluated will be slightly penalized. No engine spends more than a few seconds on
startup and almost all runs took multiple minutes or even hours so the penalty is insignificant.
This also means that any adaptation by the engine to the data in Wikidata or normal queries is
considered to be part of the benchmark timing.

Then the multiple queries in each benchmark run are evaluated in succession, with no attempt
to clear any cached information between queries. The input and output formats were the same for
each engine. The benchmark runs, with the exception of the Scholia benchmark, had hundreds
of queries. This much better simulates the situation with a query service than attempting to
remove caches.

The controlling program is run on the same computer as the engine. It generally took minimal
resources, except when the queries return very large answer sets and receiving the answer set
takes some resources on the computer. The processing power required for this does not impact
the benchmarking as there are always many threads unused. The memory taken to store the
result does have some impact, competing for main memory with the system disk cache. Running
the controlling program on the same computer as the engines, however, eliminates the overhead
in both time and memory to send the results to a different computer. This overhead can be
considerable, even when both computers are in the same local network, so running the controlling
program on the same computer was deemed better.

The controlling program records the elapsed time between sending the query to the engine
and receiving the answers from the engine. This includes any time to transmit the information
between the controlling program and the engine, but not all engines provide internal timing
information. If this time is longer than the maximum time the query evaluation is determined
to have timed out. The output from the engine is checked for any reported errors. For each
successful query one piece of information about the answer set is recorded. For queries with
multiple or no answers the number of answers is recorded. For queries with one answer the value
of the first variable in the query is recorded.

The benchmarking process lasted from late October 2024 to late March 2025. Benchmarks
were run multiple times to remove problems in the early runs and as new versions of some of
the engines were made available. Initial results of the benchmarks were publicized and made
public at https://www.wikidata.org/wiki/Wikidata:Scaling_Wikidata/Benchmarking and
newly-discovered bugs and anomalies were communicated to the teams responsible for the engine
involved, resulting in new versions of both QLever and MillenniumDB being available. The
results here are for the latest runs for each engine.

Each set of queries for the existing benchmarks was run three times—once as described above,
once with the query modified to only return the count of the number of answers, and once with
the query modified to return only distinct answers. The second run was performed to eliminate
the overhead of transmitting large answer sets. The third run was performed to help see how
many times Virtuoso returned incorrect answer sets for transitive path queries. The Scholia
benchmark queries were only run unmodified, after the changes described above, as most of them
only returned a few answers with no duplicates. In a few cases the engine terminated when
evaluating a query. These cases are marked and the engine restarted with the next query.

https://www.wikidata.org/wiki/Wikidata:Scaling_Wikidata/Benchmarking


WDQS Benchmark Statistics, Unadjusted Timings
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 11 88 511 6155 600018 12560 31 1 14
MillenniumDB 298 1 31 588 24176 602338 103271 0 43 5
QLever 298 2 26 103 559 301655 4583 3 0 12
Virtuoso 298 1 68 461 3264 600754 14645 13 2 30

WDQS Benchmark Statistics, Adjusted Timings
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 17 89 520 6403 60000 10236 21 16 13
MillenniumDB 298 1 31 588 24176 60000 15482 0 64 3
QLever 298 2 26 103 559 60000 2290 1 6 12
Virtuoso 298 2 80 577 4503 60000 8506 12 13 28

WDQS Benchmark Statistics, Counted Answers, Unadjusted Timings
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 18 97 465 6803 600037 28682 23 6 14
MillenniumDB 298 1 31 571 23744 600987 102989 0 43 4
QLever 298 2 22 78 445 298940 4158 3 0 12
Virtuoso 298 1 52 381 2632 600735 14130 12 2 26

WDQS Benchmark Statistics, Counted Answers, Adjusted Timings
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 24 98 466 7464 60000 10683 13 24 14
MillenniumDB 298 1 31 571 23744 60000 15341 0 64 3
QLever 298 2 22 78 445 60000 1908 1 5 12
Virtuoso 298 2 57 449 3318 60000 7908 11 13 24

WDQS Benchmark Statistics, Distinct Answers, Unadjusted Timings
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 12 83 469 5333 600023 12220 32 1 14
MillenniumDB 298 2 30 592 24094 602783 103326 0 43 3
QLever 298 2 26 101 558 297839 4730 3 0 13
Virtuoso 298 1 69 501 3321 600741 14266 12 2 23
Engine Count min q1 q2 q3 max Mean Error Timeout Diverge
Blazegraph 298 18 84 479 5777 60000 10177 19 18 14
MillenniumDB 298 2 30 592 24094 60000 15510 0 64 1
QLever 298 2 26 101 558 60000 2461 1 7 13
Virtuoso 298 3 82 589 4489 60000 8251 11 14 22

Table 1
Statistics for WDQS Benchmark, timings in milliseconds

5. Results

For each engine the results of each set of queries were analyzed to compute the minimum and
each quartile elapsed times, the mean elapsed time, the number of timeouts, the number of errors
encountered, and the number of times the retained answer information diverges from a single
mode for the four engines. The arithmetic mean is used to show how the queries would consume
time on servers as opposed to show expectations by users, where geometric means are normally
used.

As well, adjusted statistics were computed, where elapsed time is capped at 60 seconds, with
times at least this long counting as a timeout, and any error counted as 60 seconds. This adjusted
time is computed mostly to penalize engines that had many errors, but also to more closely
mirror times in current public services.

The statistics for all three variations of the WDQS benchmark with both unmodified and
adjusted timings are shown in Table 1. On this benchmark QLever is significantly the fastest for
all three variations, no matter whether the timings are adjusted or not. The relative difference in



speed between QLever and MillenniumDB, the slowest engine, is about 25 times for unadjusted
timings and about 7 times for adjusted timings. QLever never takes the full 600 seconds for any
query and only takes more than 60 seconds for a few, whereas MillenniumDB times out on about
1 in 7 queries.

Blazegraph has quite a few errors on this benchmark, mostly due to running out of memory.
Virtuoso has a few errors mostly due to refusal to evaluate the query due to high estimated times.
incorrect syntax processing, or issues with transitive paths. The Qlever errors are due to running
out of memory. Each engine diverges from a common mode in a few cases. Virtuoso diverging
the most, mostly due to invalid duplicates from transitive paths. Most of the divergences for
MillenniumDB appear to be from a bug in embedded query processing. The divergences for
Blazegraph appear to be mostly from the Blazegraph loading process removing some triples
related to Wikidata labels. Some divergences, and most of the QLever divergences, are due to
extra processing of numeric and GeoSPARQL values.

6. Summarization and Analysis

These statistics were further processed to produce summaries, removing the some of the statistical
information to show combined performance of each engine on the benchmarks, with the five
components of WDBench shown separately. This allows the timings and issues for each engine
to be shown in a smaller format. For the existing benchmarks six blocks of information are
generated—for adjusted and unadjusted on each way the benchmarks have been run. This
information is shown in Tables 2 and 3. For the Scholia benchmark again both unadjusted and
adjusted information is shown in Table 4, but only for some of the query classes.
Existing Benchmarks The summaries for the existing benchmarks show that all the engines
have divergences from a single mode, likely indicating deviations from the SPARQL standard.
Penalizing for divergences was not done, because it was not always certain that divergences
are incorrect answers. The detailed results were examined and some queries run outside the
benchmarking process to determine some reasons for these divergences.

The large number of divergences for Virtuoso are mostly due to two known issues. Virtuoso
returns duplicates from transitive path matching where the standard requires no duplicates.
Virtuoso also silently only produces at most 1048576 answers for any query. In the WDBench
benchmarks this produces over one thousand divergences, with the second cause producing over
60% of the divergences, as shown by the statistics for when only counts are returned. This large
number of divergences should be taken into account when considering Virtuoso.

The divergences for MillenniumDB appear to be mostly due to not returning duplicates for
alternatives in property paths. Other divergences for MillenniumDB appear to be from a bug in
embedded query processing.

Many divergences for Blazegraph are from the Blazegraph loading process removing some
triples related to Wikidata labels, and are thus not a problem with Blazegraph itself. Other
divergences for Blazegraph come from an incorrect ordering of DISTINCT and LIMIT processing.

QLever and possibly other engines transform numeric RDF literals into internal data, which
does not conform to the RDF and SPARQL standards. For example, "1"^^xsd:integer and
"01"^^xsd:integer incorrectly become the same RDF node. This causes the majority of the
divergences for QLever. GeoSPARQL datatypes were also a source of divergences.

The summaries for the existing benchmarks also show a considerable number of errors, so
penalizing the engines for errors is appropriate.

Most of the errors for QLever result from running out of memory. QLever query processing
appears to trade off space for time, and QLever can request large amounts of memory for queries,
thus running out of space. Optional clauses and requiring results to be distinct appear to affect
this tradeoff, so much that QLever runs out of memory very often when either of these constructs
is present and resultant penalty in the adjusted timings is significant.



B
en

ch
m

ar
k

B
la

ze
gr

ap
h

M
ill

en
ni

um
D

B
Q

Le
ve

r
V

irt
uo

so
U

nm
od

ifi
ed

qu
er

ie
s,

U
na

dj
us

te
d

tim
in

gs
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
W

G
P
B

64
4

63
2

2
0

0
21

9
0

0
0

12
0

0
0

0
97

8
96

6
0

1
0

si
ng

le
B

G
P
s

31
03

26
02

0
0

15
50

1
0

0
0

0
76

9
26

8
0

0
5

17
26

12
25

0
0

51
m

ul
tip

le
B

G
P
s

96
53

50
23

10
0

0
54

42
81

2
0

0
0

46
30

0
6

0
3

76
08

29
78

73
4

38
3

op
tio

na
ls

20
85

1
38

33
23

3
3

25
36

4
83

46
0

10
0

17
01

8
0

12
7

0
8

25
56

6
85

48
50

6
29

0
pa

th
s

25
27

7
21

00
1

21
12

4
72

93
30

17
1

4
18

42
76

0
5

2
0

56
91

14
15

49
2

42
2

ot
he

rs
96

11
4

92
94

4
15

54
23

82
33

7
79

16
7

0
55

3
31

70
0

2
0

8
18

23
9

15
06

9
20

9
32

0
W

D
Q

S
12

56
0

79
77

31
1

14
10

32
71

98
68

8
0

43
5

45
83

0
3

0
12

14
64

5
10

06
2

13
2

30
T

O
TA

LS
16

82
02

13
40

12
10

2
70

59
22

42
29

19
00

39
1

11
2

26
34

45
8

26
8

14
3

2
36

74
45

3
40

26
3

20
5

24
14

96
U

nm
od

ifi
ed

qu
er

ie
s,

A
dj

us
te

d
tim

in
gs

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

W
G

P
B

50
1

48
9

1
1

0
21

9
0

0
0

12
0

0
0

0
34

2
33

0
0

1
0

si
ng

le
B

G
P
s

20
73

15
72

0
3

14
50

1
0

0
0

0
76

9
26

8
0

0
5

17
26

12
25

0
0

51
m

ul
tip

le
B

G
P
s

93
02

45
73

6
11

0
47

84
55

0
2

0
47

29
0

6
0

3
10

41
5

56
86

73
7

38
1

op
tio

na
ls

16
88

5
43

85
19

22
2

12
50

0
0

0
26

0
21

20
1

87
01

11
5

29
8

15
13

7
26

37
50

36
26

0
pa

th
s

86
65

63
36

0
64

3
27

08
37

9
1

11
18

23
29

0
3

8
0

66
86

43
57

43
15

41
5

ot
he

rs
20

71
6

18
32

7
9

13
3

9
15

29
5

12
90

6
0

10
0

2
23

89
0

1
4

8
77

67
53

78
19

28
30

3
W

D
Q

S
10

23
6

79
46

21
16

13
15

48
2

13
19

2
0

64
3

22
90

0
1

6
12

85
06

62
16

12
13

28
T

O
TA

LS
68

37
8

43
62

8
56

25
0

41
51

29
1

26
54

1
1

20
3

23
33

71
9

89
69

12
6

47
36

50
57

9
25

82
97

19
7

10
0

14
38

C
ou

nt
ed

re
su

lts
,U

na
dj

us
te

d
tim

in
gs

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

W
G

P
B

10
78

10
66

0
1

0
21

9
0

0
0

12
0

0
0

0
76

2
75

0
0

1
0

si
ng

le
B

G
P
s

16
19

16
11

0
0

15
17

9
0

0
0

8
0

0
0

4
11

6
10

8
0

0
1

m
ul

tip
le

B
G

P
s

18
11

1
17

57
1

7
4

5
13

00
76

0
0

0
0

54
0

0
6

0
8

41
22

35
82

0
4

0
op

tio
na

ls
46

24
8

31
69

7
19

2
4

7
19

97
5

54
24

0
10

0
14

55
1

0
12

7
0

9
31

14
0

16
58

9
1

14
0

pa
th

s
23

20
6

19
33

7
15

15
4

67
66

28
97

1
4

20
38

69
0

5
2

3
50

65
11

96
49

3
36

5
ot

he
rs

97
50

6
95

49
0

7
56

26
81

01
1

78
99

5
0

54
3

20
16

0
2

0
8

17
44

1
15

42
5

16
9

24
0

W
D

Q
S

28
68

2
24

52
4

23
6

14
10

29
89

98
83

1
0

43
4

41
58

0
3

0
12

14
13

0
99

72
12

2
26

T
O

TA
LS

21
64

50
19

12
96

24
4

86
71

21
20

79
18

69
25

1
11

1
27

25
15

4
0

14
3

2
44

72
77

6
47

62
2

78
33

63
2

Table 2
Summary Information for Existing Benchmarks (Part 1), times in milliseconds

Slow=Difference from fastest time, Err=Error, TO=Timeout, Div=Diverge



B
en

ch
m

ar
k

B
la

ze
gr

ap
h

M
ill

en
ni

um
D

B
Q

Le
ve

r
V

irt
uo

so
C
ou

nt
ed

re
su

lts
,A

dj
us

te
d

tim
in

gs
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
W

G
P
B

44
3

43
1

0
1

0
21

9
0

0
0

12
0

0
0

0
12

6
11

4
0

1
0

si
ng

le
B

G
P
s

16
19

16
11

0
0

15
17

9
0

0
0

8
0

0
0

4
11

6
10

8
0

0
1

m
ul

tip
le

B
G

P
s

14
45

7
13

81
4

7
18

5
68

1
38

0
2

0
64

3
0

6
0

8
73

5
92

0
6

0
op

tio
na

ls
33

75
8

26
25

4
10

8
10

5
7

75
04

0
0

24
0

19
06

6
11

56
2

11
5

28
9

77
69

26
5

1
46

0
pa

th
s

86
27

66
95

10
42

3
22

27
29

5
1

10
20

19
32

0
3

8
3

58
30

38
98

43
11

36
3

ot
he

rs
22

45
5

21
21

2
3

14
0

12
14

15
4

12
91

1
0

10
0

2
12

43
0

1
4

8
60

98
48

55
15

28
22

9
W

D
Q

S
10

68
3

87
75

13
24

14
15

34
1

13
43

3
0

64
3

19
08

0
1

5
12

79
08

60
00

11
13

24
T

O
TA

LS
92

04
2

78
79

2
14

1
33

0
56

39
94

5
26

69
5

1
20

0
25

24
81

2
11

56
2

12
6

45
44

28
58

2
15

33
2

70
10

5
61

7
D

is
tin

ct
re

su
lts

,U
na

dj
us

te
d

tim
in

gs
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
W

G
P
B

62
6

61
1

2
0

0
22

7
0

0
0

15
0

0
0

0
83

9
82

4
0

1
0

si
ng

le
B

G
P
s

38
73

31
14

20
0

15
75

9
0

0
0

0
76

9
10

0
0

5
17

69
10

10
0

0
51

m
ul

tip
le

B
G

P
s

16
10

9
90

66
36

3
0

0
76

59
61

6
0

0
0

26
65

7
19

61
4

24
1

2
2

70
43

0
45

3
41

0
op

tio
na

ls
21

98
0

0
27

5
3

4
27

91
3

59
33

0
10

0
29

29
1

73
11

13
4

0
8

29
38

3
74

03
27

8
30

8
pa

th
s

26
71

6
20

69
0

65
12

2
83

18
22

92
1

4
1

22
47

2
16

44
6

9
19

1
60

26
0

50
2

11
1

ot
he

rs
96

89
5

82
30

1
99

53
4

83
03

2
68

43
8

0
56

0
14

59
4

0
42

3
11

19
51

9
49

25
19

9
11

1
W

D
Q

S
12

22
0

74
90

32
1

14
10

33
26

98
59

6
0

43
3

47
30

0
3

0
13

14
26

6
95

36
12

2
23

T
O

TA
LS

17
84

19
12

32
72

85
6

69
39

23
10

29
17

58
82

1
11

3
4

98
52

8
43

38
1

42
9

24
40

78
84

5
23

69
8

15
3

25
10

14
D

is
tin

ct
re

su
lts

,A
dj

us
te

d
tim

in
gs

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

W
G

P
B

50
2

48
7

1
1

0
22

7
0

0
0

15
0

0
0

0
20

3
18

8
0

1
0

si
ng

le
B

G
P
s

59
08

51
49

19
3

14
75

9
0

0
0

0
76

9
10

0
0

5
17

69
10

10
0

0
51

m
ul

tip
le

B
G

P
s

36
67

5
29

68
7

35
9

8
0

69
88

0
0

2
0

29
91

6
22

92
8

23
1

64
2

83
28

13
40

45
7

40
7

op
tio

na
ls

37
22

1
23

81
2

26
6

19
4

14
90

7
14

98
0

26
0

25
02

1
11

61
2

10
8

66
8

13
40

9
0

27
38

27
5

pa
th

s
11

77
7

86
13

31
65

2
31

64
0

1
11

0
44

35
12

71
3

32
1

68
01

36
37

44
15

10
5

ot
he

rs
27

40
8

19
73

3
85

13
2

4
15

97
6

83
01

0
10

0
0

88
27

11
52

37
26

11
76

75
0

18
28

10
5

W
D

Q
S

10
17

7
77

16
19

18
14

15
51

0
13

04
9

0
64

1
24

61
0

1
7

13
82

51
57

90
11

14
22

T
O

TA
LS

12
96

68
95

19
7

78
0

24
6

38
57

32
6

22
85

5
1

20
3

1
71

44
4

36
97

3
38

0
19

5
40

46
43

6
11

96
5

14
5

10
3

96
5

Table 3
Summary Information for Existing Benchmarks (Part 2), times in milliseconds

Slow=Difference from fastest time, Err=Error, TO=Timeout, Div=Diverge



B
en

ch
m

ar
k

B
la

ze
gr

ap
h

M
ill

en
ni

um
D

B
Q

Le
ve

r
V

irt
uo

so
U

na
dj

us
te

d
tim

in
gs

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

au
th

or
85

30
80

58
15

0
0

13
06

89
13

02
17

10
19

6
30

06
25

34
10

0
5

47
2

0
27

0
0

ch
em

-c
la

ss
10

24
38

10
19

93
5

5
0

21
95

33
21

90
88

0
10

0
44

5
0

5
0

0
59

0
14

5
10

0
0

ch
em

-e
le

m
15

01
37

14
95

49
0

5
0

15
00

29
14

94
41

0
5

0
58

8
0

0
0

0
22

57
16

69
0

0
0

co
m

pl
ex

16
42

11
16

39
61

5
5

0
15

84
53

15
82

03
0

5
0

30
07

09
30

04
59

0
10

0
25

0
0

5
0

0
ev

en
t-

se
rie

s
10

28
77

10
19

99
20

5
0

31
29

28
31

20
50

0
24

0
44

05
5

43
17

7
7

3
0

87
8

0
25

0
0

pr
oj

ec
t

75
11

2
74

86
1

0
5

0
14

24
75

14
22

24
0

7
0

37
0

11
9

0
0

0
25

1
0

15
0

1
pr

op
er

ty
24

35
33

24
11

16
0

4
0

16
14

5
13

72
8

0
0

0
24

17
0

0
0

0
39

79
15

62
0

0
0

pr
ot

ei
n

61
54

5
61

41
7

5
2

0
36

01
66

36
00

38
0

15
0

98
76

97
48

9
0

0
12

8
0

20
0

0
to

pi
c

24
28

63
23

93
61

13
33

0
42

42
04

42
07

02
0

59
0

45
52

10
50

2
0

0
35

02
0

10
0

10
ve

nu
e

94
22

2
93

72
7

3
13

0
21

92
71

21
87

76
0

39
0

49
5

0
0

0
1

34
95

30
00

7
0

0
w

ik
ip

ro
je

ct
14

88
28

14
85

93
20

15
0

28
56

85
28

54
50

10
30

0
23

5
0

10
0

0
23

17
20

82
15

0
1

w
or

k
94

26
91

73
10

0
0

94
37

0
94

11
7

15
6

1
18

30
15

77
11

0
0

25
3

0
10

0
4

T
O

TA
LS

16
32

77
5

16
11

18
0

14
5

10
7

5
49

29
57

1
49

07
97

6
45

35
1

10
54

86
62

52
70

67
93

13
17

51
45

6
29

86
1

22
1

1
38

A
dj

us
te

d
tim

in
gs

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

M
ea

n
Sl

ow
Er

r
T

O
D

iv
M

ea
n

Sl
ow

Er
r

T
O

D
iv

au
th

or
82

68
23

13
15

0
0

23
38

7
17

43
2

10
19

6
59

55
0

10
0

5
15

17
2

92
17

27
0

0
ch

em
-c

la
ss

20
09

7
96

69
5

5
0

22
01

2
11

58
4

0
10

0
10

42
8

0
5

0
0

20
40

7
99

79
10

0
0

ch
em

-e
le

m
15

13
0

14
54

2
0

5
0

15
00

8
14

42
0

0
5

0
58

8
0

0
0

0
22

57
16

69
0

0
0

co
m

pl
ex

30
04

6
14

95
8

5
5

0
23

42
6

83
38

0
5

0
30

49
9

15
41

1
0

10
0

15
08

8
0

5
0

0
ev

en
t-

se
rie

s
30

03
3

14
06

1
20

5
0

32
41

1
16

43
9

0
24

0
15

97
2

0
7

3
0

30
80

7
14

83
5

25
0

0
pr

oj
ec

t
76

09
72

39
0

5
0

15
01

5
14

64
5

0
7

0
37

0
0

0
0

0
22

60
2

22
23

2
15

0
1

pr
op

er
ty

19
95

0
17

53
3

0
4

0
12

89
4

10
47

7
0

0
0

24
17

0
0

0
0

39
79

15
62

0
0

0
pr

ot
ei

n
16

90
3

0
5

2
0

36
11

9
19

21
6

0
15

0
24

16
1

72
58

9
0

0
48

00
1

31
09

8
20

0
0

to
pi

c
39

13
4

35
20

4
13

33
0

48
81

2
44

88
2

0
59

0
39

30
0

2
0

0
99

44
60

14
10

0
10

ve
nu

e
17

30
4

16
80

9
3

13
0

27
05

3
26

55
8

0
39

0
49

5
0

0
0

1
69

99
65

04
7

0
0

w
ik

ip
ro

je
ct

32
58

6
23

15
3

20
15

0
41

68
4

32
25

1
10

30
0

94
33

0
10

0
0

15
55

3
61

20
15

0
1

w
or

k
86

77
0

10
0

0
18

03
4

93
57

15
6

1
11

18
9

25
12

11
0

0
88

24
14

7
10

0
4

T
O

TA
LS

35
30

23
20

38
30

14
5

10
7

5
63

72
92

48
80

99
45

35
1

10
23

62
35

87
04

2
93

13
17

37
40

81
22

48
88

22
1

1
38

Table 4
Summary for Scholia Benchmark (Selected Templates), times in ms

Slow=Difference from fastest time, Err=Error, TO=Timeout, Div=Diverge



Blazegraph also often runs out of memory, with a significant resultant penalty. Blazegraph
also regularly reports errors in access to its internal data structures.

Virtuoso first estimates the time it would take to evaluate a query and refuses to run the
query if this estimate is out of bounds. Unfortunately, the query estimator regularly produces
unbelievable estimates resulting Virtuoso frequently refusing to run a query. The penalty for
these errors is significant.

MillenniumDB and QLever are not complete implementations of SPARQL and a few queries
contain constructs that they do not handle. Virtuoso also reports a few queries that it cannot
handle, mostly relating to transitive property paths. MillenniumDB has very few errors overall.
This does need to be balanced against the large number of timeouts for MillenniumDB.

The timings show QLever as the fastest engine for the existing benchmarks, except for the
versions with distinct results where Virtuoso is fastest. Otherwise Virtuoso is the second-fastest,
but this needs to be balanced with the large number of divergences for Virtuoso.

In unadjusted timings, MillenniumDB is the slowest overall. MillenniumDB is fast when there
are simple queries or limited answers but is very slow when there are complex queries (WDBench
others and WDQS). It thus appears that MillenniumDB is speedy on atomic operations but does
not do a good job of producing good query plans for complex queries. When timings are adjusted
to account for errors, Blazegraph is the slowest by a large margin over QLever and Virtuoso.
Scholia benchmark The Scholia benchmark also shows the need to adjust timings to account
for errors. In the unadjusted timings Virtuoso is the fastest, but it has the most errors. When
timings are adjusted, Virtuoso sinks to third and QLever is fastest by a ratio of about two-thirds
over Blazegraph. MillenniumDB is the slowest on this benchmark, timing out on many of the
queries, and is about 2.7 times slower than QLever. The slowness of MillenniumDB is likely due
to the complex queries in the benchmark.

Almost all of the 145 errors for Blazegraph in the Scholia benchmark are due to running out of
memory. MillenniumDB produces no output for its 45 errors so the cause cannot be determined,
but it is likely that the cause for most of them is unrecognized answers from service calls. Close
to half of the 93 errors for QLever are due to running out of memory, with most of the rest due
to unrecognized answers from service calls and a few due to unimplemented syntax. Of the 221
errors for Virtuoso, over half are due to unimplemented syntax and most of the rest due to high
estimated execution times with most of these estimated times being excessive or abnormal.

There are some divergences in the answers from the engines. As before, Virtuoso has the most
divergences, with Blazegraph having the fewest. The reason for most of these divergences is
unknown due to the complex nature of the queries. Some divergences appear to be due to the
reasons identified above.

7. Summary and Recommendation

QLever is the fastest engine overall, but is slower for distinct answers. Virtuoso is fast but
diverges the most by far mostly due to several known causes. MillenniumDB and Blazegraph are
the slowest. MillenniumDB is fast on simple queries, but slow on complex queries.

None of the engines are free of errors or divergences, even Blazegraph. That Blazegraph has
divergences is a bit surprising because Blazegraph was in use for the official Wikidata Query
Service while it was still being maintained. Both QLever and MillenniumDB are under active
development, which should improve their performance and reduce their errors and divergences.

From the results in these benchmarks, a Wikidata Query Service based on QLever would be
significantly faster and produce more answers and fewer errors than one based on Blazegraph.
QLever now appears to be a viable replacement for Blazegraph in the official Wikidata Query
Service as it has recently been extended to allow its RDF graph to be updated while it is running.

Acknowledgments: This work was partly supported by a grant from Wikimedia Switzerland.



References

[1] D. Vrandečić, M. Krötzsch, Wikidata: A free collaborative knowledgebase, C. of the ACM
57 (2014) 78–85.

[2] Wikidata, Wikidata main page, https://www.wikidata.org/wiki/Wikidata:Main_Page,
2025. Accessed 30 April 2025.

[3] Wikimedia Deutschland, Wikibase, https://wikiba.se/, 2025. Accessed 30 April 2025.
[4] SPARQL, SPARQL 1.1 query language, W3C Recommendation, https://www.w3.org/TR/

sparql11-query/, 2013.
[5] Richard Cyganiak and David Wood and Markus Lanthaler, RDF 1.1 concepts and abstract

syntax, W3C Recommendation, https://www.w3.org/TR/rdf11-concepts/, 2014.
[6] Wikidata:RDF, Wikidata:RDF, https://www.wikidata.org/wiki/Wikidata:RDF, 2025. Ac-

cessed 30 April 2025.
[7] Blazegraph, Welcome to Blazegraph, blazegraph.com, 2020. Accessed 23 July 2024.
[8] H. Bast, B. Buchhold, QLever: A query engine for efficient SPARQL+text search, in: CIKM

’17: ACM Conference on Information and Knowledge Management, 2017.
[9] G. Lederrey, L. Pintscher, D. Causse, Wikidata query service: Where are we? Where is it

going?, Data Reuse Days 2025, https://docs.google.com/presentation/d/1DHxnjkZKwly9
AKONOJtvfTk6ls6DBw1Ab6gHdODM5XA, 2025.

[10] Wikidata SPARQL Query Service Backend Update, Wikidata SPARQL query service
backend update, https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQ
S_backend_update, 2025. Accessed 30 April 2025.

[11] D. Vrgoč, C. Rojas, R. Angles, M. Arenas, D. Arroyuelo, C. Buil-Aranda, A. Hogan,
G. Navarro, C. Riveros, J. Romero, MillenniumDB: An open-source graph database system,
Data Intelligence 5 (2023).

[12] H. Bast, QLever performance evaluation and comparison to other SPARQL engines, https:
//github.com/ad-freiburg/qlever/wiki/QLever-performance-evaluation-and-comparison-t
o-other-SPARQL-engines, 2025. Accessed 8 May 2025.

[13] Virtuoso, Virtuoso open-source edition, https://vos.openlinksw.com/owiki/wiki/VOS, 2024.
Accessed 30 April 2025.

[14] F. Å. Nielsen, D. Mietchen, E. Willighagen, Scholia and scientometrics with Wikidata, in:
Scientometrics 2017, 2017, pp. 237–259. URL: https://arxiv.org/pdf/1703.04222.

[15] A. N. Lam, B. Elvesæter, F. Martin-Recuerda, in: The Semantic Web: 20th International
Conference, ESWC 2023, 2023, pp. 679–696. doi:http://dx.doi.org/10.1007/978-3-031
-33455-9_40.

[16] RDF 1.1 Turtle, RDF 1.1 Turtle, W3C Recommendation, https://www.w3.org/TR/turtle/,
2014.

[17] A. Hogan, C. Riveros, C. Rojas, A. Soto, A worst-case optimal join algorithm for SPARQL,
in: Proceedings of the 18th International Semantic Web Conference (ISWC), 2019.

[18] R. Angles, C. B. Aranda, A. Hogan, C. Rojas, D. Vrgoč, Wdbench: A wikidata graph query
benchmark, in: U. Sattler, A. Hogan, M. Keet, V. Presutti, J. P. A. Almeida, H. Takeda,
P. Monnin, G. Pirrò, C. d’Amato (Eds.), The Semantic Web – ISWC 2022, Springer, 2022,
pp. 714–731.

[19] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, A. Bielefeldt, Getting the most out of
Wikidata: Semantic technology usage in Wikipedia’s knowledge graph, in: D. Vrandečić,
K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, E. Sim-
perl (Eds.), Proceedings of the 17th International Semantic Web Conference (ISWC’18),
Springer, 2018, pp. 376–394.

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/rdf11-concepts/
blazegraph.com
https://docs.google.com/presentation/d/1DHxnjkZKwly9AKONOJtvfTk6ls6DBw1Ab6gHdODM5XA
https://docs.google.com/presentation/d/1DHxnjkZKwly9AKONOJtvfTk6ls6DBw1Ab6gHdODM5XA
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_backend_update
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_backend_update
https://github.com/ad-freiburg/qlever/wiki/QLever-performance-evaluation-and-comparison-to-other-SPARQL-engines
https://github.com/ad-freiburg/qlever/wiki/QLever-performance-evaluation-and-comparison-to-other-SPARQL-engines
https://github.com/ad-freiburg/qlever/wiki/QLever-performance-evaluation-and-comparison-to-other-SPARQL-engines
https://vos.openlinksw.com/owiki/wiki/VOS
https://arxiv.org/pdf/1703.04222
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-031-33455-9_40
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-031-33455-9_40
https://www.w3.org/TR/turtle/

	1 Introduction
	2 Wikidata in RDF
	3 The Benchmarks
	4 Running the Benchmarks
	5 Results
	6 Summarization and Analysis
	7 Summary and Recommendation

