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Abstract
Knowledge graph-based question answering (KGQA) systems are increasingly employed to retrieve
accurate answers to natural language queries by leveraging structured knowledge graphs. Since such
KGQA systems are frequently being deployed in many critical domains, the integrity of such systems
under adversarial threat is of utmost importance. Although a number of works have studied how to
make a KGQA system which can generate the most correct answers to the given query, the robustness of
such systems is relatively less studied. To fill this gap, in this paper, we introduce an adversarial attack
approach to systematically evaluate and exploit the vulnerability of KGQA systems to data poisoning
attacks. More specifically, we poison the underlying knowledge graph so that the KGQA system returns
wrong answers corresponding to a target question. This is done in a black-box setting, requiring only
query access to the KGQA system and no internal knowledge of its architecture. Considering a KGQA
system that utilizes DBpedia and Wikidata knowledge graphs, we find that our adversarial attack, albeit
being simple, is quite effective in generating false answers. Additionally, we assess the stealthiness of our
attack approach by considering the performance of the KGQA system on the untargeted queries and
the underlying knowledge graphs. Our results highlight the need for a research direction in developing
robust KGQA against data poisoning attacks on such systems.

1. Introduction

Knowledge graph-based question answering (KGQA) systems are increasingly essential in
applications such as virtual assistants, biomedical search engines, and enterprise knowledge
discovery tools [1, 2]. These systems aim to answer natural language questions by mapping
them to structured queries over knowledge graphs, which offer rich semantic representations
of real-world entities and relations. One of the earliest works to this end is by Berant et al. [3],
which relies on semantic parsing or template-based matching to perform question-answering.
The core idea therein is to map natural language phrases to logical predicates by leveraging
a knowledge base and a large text corpus. With the advent of attention-based approaches,
existing KGQA systems mostly incorporate transformer-based models to enhance question
understanding and reasoning capabilities. For instance, Sun et al. proposed GRAFT-Net [4] that
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uses graph-based attention for open-domain QA, while actively retrieving relevant subgraphs
during inference. In recent years, using sequence-to-sequence models for transforming natural
language questions into SPARQL without relying on hand-crafted rules or statistics has shown
effective performance [5, 6, 7]. SPARQL-based KGQA systems such as MST5 [7] work by
translating natural language questions into SPARQL queries by jointly performing entity linking
and query generation using a multilingual sequence-to-sequence model. The generated query
is then executed over a knowledge graph to retrieve the answer, without relying on handcrafted
rules or templates. Note that the existing works have mostly focused on building KGQA systems
that achieve high accuracy and can work with multiple languages. To the best of our knowledge,
only a few works [8, 9, 10] have studied the robustness of some specific types of KGQA systems,
considering the potential security threats that can arise therein.

To this end, several researchers have extensively studied different adversarial attack strategies
on the embedding models considering the link prediction tasks by poisoning the knowledge
graph (KG) or by performing adversarial manipulations of the embedding model [11, 12, 13, 14,
15, 16, 17, 18]. The fundamental concept behind these attacks is to focus on a particular fact in the
KG and poison the graph in such a way so that the link prediction for a specific triple decreases.
Beyond the link prediction tasks, only a few works considered studying the robustness of the
KGQA system. One of the prominent works to this end by Xi et al. [8] perform a surrogate model-
based attack on a custom-made multi-hop reasoning KGQA system by poisoning the underlying
biomedical KG. Ma et al. [10] recently proposed an adversarial attack on KG-augmented QA
systems, which combine pretrained language models with external knowledge graphs. Through
multi-round entity selection, prompt crafting, and pruning, it reconstructs a high-utility KG
with minimal queries and performance loss. These approaches paved the way for some initial
assessment of the robustness of some specific types of KGQA systems. However, to the best
of our knowledge, no works have considered evaluating the robustness of the SPARQL-based
KGQA systems. Building a robust KGQA system is of high importance given the real-world
manipulations done on the open-source KGs. For instance, Wikidata has been targeted in the
past by coordinated misinformation campaigns, where malicious edits introduced biased or
false facts about political figures or controversial events 1.

In this work, we address this gap by introducing an adversarial approach called localized
structural attack (LoSA) for the SPARQL-based KGQA system. Considering a black-box setting,
our approach works by modifying the underlying knowledge graph to mislead the system
into returning plausible yet incorrect answers. More specifically, we systematically update
a small selected subset of Resource Description Framework (RDF) triples, associated with a
question–answer pair, to disrupt the execution of the corresponding SPARQL query for the
target question. The attack is black-box in nature since it does not require any access to internal
model parameters or training data. It only leverages the system’s query interface and the
structure of the KG. Additionally, our attack approach LoSA is lightweight, model-agnostic, and
suitable for evaluating a wide range of SPARQL-based QA systems. Since it focuses on altering
only the localized region of the KG relevant to a given query, the attack remains stealthy to
the other QA pairs. Note that the attack scenario we considered in this work is quite plausible.
Since the KGQA systems often use KGs such as DBpedia [19], or Wikidata [20], which are open

1https://en.wikipedia.org/wiki/List_of_political_editing_incidents_on_Wikipedia
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source, thereby giving the attackers the possibility to poison the graph.
We evaluate the effectiveness of our adversarial approach by considering a specific state-of-

the-art multilingual KGQA system MST5 [7]. To this end, we consider two different underlying
KGs, namely DBpedia and Wikidata. We find that even minimal, targeted manipulations can
substantially impair QA performance. To this end, we also evaluate the stealthiness of the
adversarial approach. Our results indicate our approach mostly remains undetected as it does
not lead to wrong answers for the other queries, apart from the one that is targeted.

2. Related Work

In the context of performing malicious attacks on KGQA approaches, not many works can be
found in the literature. Precisely, in this context, the existing works mostly focused on poisoning
the KGs in order to maliciously manipulate the link prediction tasks [11, 12, 13, 14, 15, 16, 17, 18].
One of the earliest works to this end is from Zhang et al. [11] who introduced a KG poisoning
attack strategy to perform adversarial attacks on the link prediction task. This is done by
shifting the embedding vector of the target triple by adding or removing new connections in
the KG. To make the attack stealthy, the authors proposed indirect attacks that involve adding
or removing triples in the KG that are not directly connected to the target triple. Pezeshkpour
et al. [12] used a gradient-based approach to find out the most influential neighboring triples of
the target fact and remove them. However, their approach is limited to only a particular type of
KGE models. Bhardwaj et al. [13] used inductive relationships such as symmetry, inversion,
and composition within the knowledge graph to perform adversarial attacks. The idea therein
is to exploit these relationships to add or remove triples, which ultimately helps the attackers to
achieve their goal. In a later work, they [14] utilized a technique from the explainability domain,
namely instance attribution, to perform data poisoning attacks on KGE models. Attribution
methods are used therein to identify training triples that most influence a target prediction,
which are then altered by removing or modifying one of their entities. You et al. [15] proposed
black-box data poisoning attacks that maintain stealthiness by adding semantically preserving
triples. Unlike prior work, they introduce indicative paths—multi-triple structures that boost the
plausibility of target triples. Zhao et al.[17] used logical rules to identify triples whose removal
most harms KGE performance. Kapoor et al. [18] performed adversarial attacks by considering
three different attack surfaces: KG, the embeddings, and the labels of the training data.

Considering the adversarial attacks on the KGQA systems, only a few works can be found
in the literature [8, 9, 10]. The work closest to ours is by Xie et al. [8] wherein they proposed
ROAR (Reasoning Over Adversarial Representations), a suite of adversarial attack techniques
against a knowledge graph reasoner used as a multi-hop QA system. The approach works by
injecting a small set of carefully selected triples into the knowledge graph by first optimizing
their embeddings in latent space to redirect reasoning outcomes toward attacker-specified
answers. These optimized embeddings are then mapped back to symbolic triples using a
heuristic search based on relation-specific projection operators and fitness scores. It works in
an iterative co-optimization loop, alternately refining poisoning triples and misleading query
components. Puerto et al. [9] introduced UKP-SQuARE, an enhanced online platform aimed at
supporting research in multi-agent question answering. Amongst other features, UKP-SQuARE



also incorporates an adversarial attack module designed to evaluate the robustness of QA models
against input perturbations. This component generates modified versions of the input questions
to probe and expose vulnerabilities in model behavior. It supports adversarial testing as a
first-class feature within its user-friendly interface, requiring no code from the user. However,
this platform does not support any SPARQL-based KGQA system. In a recent work, Ma et
al. [10] proposed KGDist, a prompt-based distillation attack targeting a KGQA system equipped
with a language model augmented with a knowledge graph. The idea herein is to extract a
specific task-relevant subgraph from a KG+LM model using the prompts and the outputs of the
QA system. The attack proceeds by initializing a small set of core entities from a domain-specific
corpus and iteratively expanding this set by querying the model and selecting highly confident
entity pairs. Then it employs a multi-granularity prompt construction strategy to query for
relationships between entities while minimizing query overhead. Finally, relation-type-based
pruning is applied to remove redundant or cyclic edges, improving the extracted graph.

In contrast to the above approaches, we target a specific class of KGQA systems, namely
SPARQL-based KGQA. While prior works (e.g., [12, 13, 14, 17]) also rely on graph modifications,
they are tailored to link prediction or embedding-based reasoning tasks and do not consider
the SPARQL query generation process. LoSA differs by explicitly aligning graph perturbations,
where query generation occurs, ensuring that changes in the KG translate into systematically
misleading SPARQL queries. Although LoSA also treats the SPARQL engine as a black box,
its design uniquely exploits the structural dependencies of SPARQL query construction. This
makes it, to the best of our knowledge, the first approach that directly performs adversarial
attacks and further evaluates the robustness in SPARQL-based KGQA systems.

3. Threat Model

We define the threat model in performing the attack on the KGQA systems. The KGs often
harvest data from open-source resources, such as DBPedia or Wikidata, which opens an attack
window for adversaries to introduce perturbations. Specifically, in our adversarial attack
approach, we assume the following threat model.

• Access to the data: We assume that the attacker only has access to the underlying
knowledge graph, which is utilized to give answers to the given query.

• Black-box system: Since we assume a black-box nature of the system, we assume that
the adversary has no knowledge of the internal architecture or training strategy of the
target KGQA system. As mentioned beforehand, since the KGs harvest data from open
source, we assume that the attacker has access to the graph.

• Attack constraints: Considering the attacker’s access to the KGs, we assume that the
adversary operates under the following practical limitations to ensure realism in our
attack setting. 1. The adversary cannot create new entities or relations in the KG. 2. The
adversary cannot insert repetitive triplets. 3. The adversary can remove triples from the
KG considering a specific subgraph. 4. The adversary is allowed to remove only a limited
number of triples. This is bounded by the attack budget, which essentially determines the
percentage of the triples to be removed.



4. Overview of Approach

In this work, we present an adversarial attack approach to change the answer to a given query.
This is done based on the structure of the KG to mislead the KGQA system by making minimal,
targeted modifications. The main strategy involves, first of all, identifying the structure of the
targeted QA pair. Afterwards, the triples related to the target QA pairs are removed by taking
into consideration that it minimally changes any other parts of the KG. In other words, the
attack should not change the answers of any other queries that are not being targeted. This
basically ensures the stealthiness of the approach. We start by giving a generic description of
the KGQA system on which the adversarial attack is performed.

4.1. KGQA System

Let ℰ be the set of entities andℛ the set of relations that exist between these entities. A triple
(ℎ, 𝑟, 𝑡) comprises a head and a tail entity (ℎ, 𝑡 ∈ ℰ) and a relation 𝑟 ∈ ℛ that holds between
them. We define a knowledge graph 𝒢 as a collection of triples:

𝒢 := {(ℎ, 𝑟, 𝑡) ∈ ℰ ×ℛ× ℰ} . (1)

Given a natural language question 𝑞, a KGQA system is designed to retrieve accurate answers
from a knowledge graph by first translating the question into a formal query language such
as SPARQL [21, 22]. This translation maps the semantic intent of the question to a structured
SPARQL query 𝑆(𝑞), which is then executed over the knowledge graph 𝒢. The execution
retrieves a subgraph 𝒢𝑞 ⊆ 𝒢, containing the relevant triples that satisfy the query constraints.
The answer 𝑎* for the given question 𝑞 is extracted directly from the result bindings of the
SPARQL query. To give a concrete example, if the question 𝑞 is “What is the capital of France?”,
the system first converts it into a SPARQL query such as,

SELECT ?capital WHERE {
wd:Q142 wdt:P36 ?capital .

}

Here, wd:Q142 corresponds to the Wikidata entity for France and wdt:P36 denotes the
hasCapital property. When executed over the knowledge graph, this query retrieves the
triple (France, hasCapital, Paris), from which the answer Paris is extracted as 𝑎*.

4.2. Local Structural-based Adversarial Attack

In our approach, we target a natural language question 𝑞 to change its correct answer from 𝑎*

to some wrong answer 𝑎̃. As mentioned beforehand, herein we assume that we only have access
to the underlying KG 𝒢. To this end, firstly, given the query, we generate its corresponding
SPARQL query 𝑆(𝑞) using a text-to-SPARQL translator. Since we assume the attacker has
access to the KG, using 𝑆(𝑞) a subgraph 𝒢𝑞 ⊆ 𝒢 can be retrieved by executing 𝑆(𝑞) over the
knowledge graph 𝒢. Then a minimal subset of triples 𝒢′𝑞 ⊆ 𝒢𝑞 with |𝒢′𝑞| ≤ 𝑘 is removed from
the graph. Herein, 𝑘 is the attack budget, indicating the maximum number of triples that can



be removed. The modified subgraph 𝒢𝑞 ∖ 𝒢′𝑞 should then cause the KGQA system to return
a false but plausible answer 𝑎̃ ̸= 𝑎*. Essentially, our adversarial attack approach evaluates
the robustness of a KGQA system by targeting a single question–answer pair at a time. Our
approach comprises of the following stages, which we outline briefly below.

1. SPARQL Generation: Translate the target natural language question 𝑞 into a SPARQL
query 𝑆(𝑞) using a text-to-SPARQL generator.

2. Subgraph Retrieval: Execute the query on the KG 𝒢 to retrieve a localized subgraph
around the answer entity.

3. Graph Alteration Remove a set of triples (≤ 𝑘) from the KG 𝒢 to cause the system to
output an incorrect response.

Below, we describe each step in detail.

4.3. SPARQL Generation

We focus on adversarially modifying the knowledge graph with respect to a specific natural lan-
guage question 𝑞. To enable this, the corresponding formal SPARQL query 𝑆(𝑞) is first obtained
through a query generation function 𝑆 : 𝒬 → 𝒮 that maps natural language questions 𝑞 ∈ 𝒬
to executable SPARQL queries 𝑆(𝑞) ∈ 𝒮 over a knowledge graph 𝒢. Specifically, this process
involves syntactic parsing, entity linking 𝜑 : 𝑞 → ℰ*, and relation linking 𝜓 : 𝑞 → ℛ*, as
well as the instantiation of query templates. However, we treat this query generation step as a
black-box component of the QA pipeline and do not intervene in its internal functionalities.
The resulting SPARQL query 𝑆(𝑞) is then used as the basis for extracting the relevant subgraph
of 𝒢𝑞 on which our adversarial modifications operate. As an illustrative example, consider the
question 𝑞 as,

Who is the daughter of the person who discovered Radium?

Given this input, the KGQA system automatically identifies the entity mention “Radium” and
links it to dbr:Radium, while recognizing relevant relations such as dbo:discoverer and
dbo:child. Based on the underlying semantic structure, it generates the following SPARQL
query:

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?daughter WHERE {
?discoverer dbo:discoverer dbr:Radium .
?discoverer dbo:child ?daughter .

}

This query retrieves all entities bound to the variable ?daughter such that there exists a
subject ?discoverer who is both linked to the discovery of dbr:Radium and is the parent of
the entity in question. The corresponding set of RDF triples selected by this query forms the
subgraph 𝒢𝑞 targeted for our adversarial intervention.



4.4. Subgraph Retrieval

We construct a question-specific subgraph 𝒢𝑞 ⊆ 𝒢 centered around the correct answer 𝑎*. We
begin by identifying the IRI corresponding to 𝑎*, as returned by the execution of the SPARQL
query 𝑆(𝑞). Using this IRI, we retrieve all RDF triples from the global knowledge graph 𝒢
in which 𝑎* appears either as the subject or object. To ensure the semantic relevance of the
extracted subgraph with respect to the original question, we further restrict this set by retaining
only those triples whose predicates are also referenced in the query 𝑆(𝑞). This filtering step
yields a localized, semantically coherent subgraph that reflects the context in which the answer
is derived. If the number of resulting triples exceeds a predefined threshold (e.g., 200), we
uniformly sample a subset to limit the computational overhead and bound the attack scope.
Considering the running example, such a subgraph is depicted in Figure 1.

RadiumMarie Curie

Irène Joliot-Curie
Physics

discovered

is mother

is daughter
field of work

Figure 1: Subgraph retrieval for: Who is the daughter of the person who discovered Radium?

4.5. Graph Alteration

This stage represents the core of the adversarial attack, which aims to deliberately alter the
knowledge graph 𝒢 such that the answer returned by the KGQA system for a given query
becomes incorrect. To constrain the attack’s scope, we define a removal budget 𝑘 ∈ N represent-
ing the maximum number of triples that can be removed. If the size of 𝒢𝑞 exceeds a predefined
threshold 𝜃, we uniformly sample a subset 𝒢′𝑞 ⊆ 𝒢𝑞 such that |𝒢𝑞| = 𝑘. The triples of 𝒢′𝑞 are
removed from the knowledge graph 𝒢 using a simple batch update operation used in SPARQL
as SPARQL DELETE DATA. This update is executed through the SPARQL update endpoint (e.g.,
Apache Fuseki). After modifying the graph, the query 𝑞 is given to the KGQA system which now
uses a modified KG. Let 𝑎̃ denote the new answer returned. The attack is considered successful
if 𝑎̃ ̸= 𝑎*, i.e., the answer changes due to the modification of the underlying knowledge graph.
This final comparison determines the effectiveness of the adversarial manipulation.

Algorithm 1 outlines a local structural adversarial attack strategy against a KGQA system. It
targets a single natural language question 𝑞 ∈ 𝒬 by first translating it into a SPARQL query
𝑆(𝑞) using a query generation module 𝒯 : 𝒬 → 𝒮 (Step 1). The correct answer 𝑎* ∈ ℰ is
obtained by executing 𝑆(𝑞) over the knowledge graph 𝒢. A question-specific subgraph 𝒢𝑞 ⊆ 𝒢



is then constructed by retrieving all RDF triples involving 𝑎*, filtered by predicates appearing
in 𝑆(𝑞) (Step 2). If the subgraph size exceeds a predefined threshold, a random sample is taken.
From this subgraph, a subset 𝑇 ′ ⊆ 𝒢𝑞 of 𝑘 triples is selected and deleted from 𝒢 (Step 3). The
query 𝑆(𝑞) is re-executed over the modified graph 𝒢 ∖𝑇 ′ to verify whether the returned answer
𝑎̃ differs from 𝑎*. If so, the attack is deemed successful (Step 4).

Algorithm 1: Local structural adversarial attack
Input: Target question 𝑞 ∈ 𝒬, SPARQL generator 𝒯 , knowledge graph 𝒢, removal

budget 𝑘
Output: Boolean success

Step 1: Answer Retrieval
𝑆(𝑞)← 𝒯 (𝑞) ; // Generate SPARQL query
𝑎* ← Execute(𝑆(𝑞),𝒢) ; // Get ground truth answer

Step 2: Subgraph Construction
𝒢𝑞 ← {(𝑠, 𝑝, 𝑜) ∈ 𝒢 | 𝑠 = 𝑎* ∨ 𝑜 = 𝑎*, 𝑝 ∈ pred(𝑆(𝑞))}
if |𝒢𝑞| > 𝜏 then
𝒢𝑞 ← UniformSample(𝒢𝑞, 𝜃) ; // Limit to 𝜃 triples

Step 3: Triple Removal
𝑇 ′ ← SelectFirstK(𝒢𝑞, 𝑘)
𝒢 ← 𝒢 ∖ 𝑇 ′ ; // Apply SPARQL DELETE DATA

Step 4: Attack Evaluation
𝑎̃← Execute(𝑆(𝑞),𝒢)
success← (𝑎̃ ̸= 𝑎*)

return success

5. Evaluations & Results

In this work, we aim to find out whether the existing SPARQL-based KGQA systems are robust to
the adversarial modifications done on the underlying KG. To this end, we consider a multilingual
KGQA system MST5 [7] which typically utilizes either DBPedia or Wikidata knowledge graphs
as the underlying knowledge sources. Note that we chose MST5 since it is an open-source
SPARQL-based KGQA framework, supporting multiple languages and offering end-to-end
pipelines from natural language questions to SPARQL queries. Furthermore, it is designed to
work with large, real-world KGs such as DBpedia and Wikidata, making it a representative
system for evaluating robustness in practical SPARQL-based QA settings.

Table 1 gives the statistical information of the DBpedia 2 and Wikidata 3 knowledge graphs. In
our evaluation, we have considered the Wikidata Dump from November 2020 and DBpedia from
October 2016. We consider the adversarial attack considering both the KGs. In our evaluation,

2https://wiki.dbpedia.org/about
3https://www.wikidata.org/wiki/Wikidata:Statistics

https://wiki.dbpedia.org/about
https://www.wikidata.org/wiki/Wikidata:Statistics


Table 1
An overview of the knowledge graphs considered as the underlying knowledge for the KGQA MST5.

Aspect DBpedia Wikidata
#Triples ∼1.3 billion ∼15 billion
#Number of Entities ∼6.6 million (English edition) ∼100 million
#Properties ∼3,000 >9,000
#Supported Languages ∼125 >300
#RDF Classes ∼760 ∼50,000

we began with a dataset of 486 natural language questions. After mapping each question to its
corresponding SPARQL query and retrieving the associated answers from the knowledge graph,
216 questions were discarded due to missing or invalid query-answer pairs, leaving 270 valid
entries. From this set, we further filtered out 62 questions whose answers did not contain valid
IRIs, resulting in 208 questions. Note that since the attack operates on subgraphs extracted from
the KG, it requires that answers are entity IRIs to ensure that an associated subgraph can be
constructed and manipulated. Literal answers (e.g., dates or numbers) do not yield meaningful
graph structures for perturbation, and thus fall outside the scope of our evaluation.

Our experimental evaluation is driven mainly by the following research questions.
RQ 1. Can our adversarial attack successfully fool the KGQA system into giving false answers?
RQ 2. Does our adversarial attack maintain stealthiness by preserving the correctness of QA

pairs that are not directly targeted?
Finally, to find out which QA pairs are easy to target, we consider the following RQ.
RQ 3. What specific types of questions showed vulnerability to adversarial manipulation?
Below, we discuss the evaluations and the corresponding results for each of these RQs.

RQ 1. To address this question, we evaluate the attack success rate of our attack approach on
the multilingual KGQA system MST5 [7], using both DBpedia and Wikidata as the underlying
knowledge graphs. The attack success rate quantifies the proportion of questions for which the
system’s predicted answer changes to another answer due to adversarial modifications made to
the knowledge graph. Note that this metric is primarily used to evaluate the robustness of the
KGQA system against adversarial attacks. Formally, it can be defined as follows.

Success Rate =

(︂
Number of Successful Attacks

Total Number of QA Pairs

)︂
× 100% (2)

Note that, herein, we do not consider an attack as successful if, after the attack, the answer
remains empty for a target question, i.e., no answers are given.

The results are illustrated in Figure 2, which shows the success rate for varying attack budget
𝑘, i.e., the number of triples allowed to be removed from the knowledge graph during the attack.
Herein, we see that, on DBpedia, the attack success rate peaks at 33.3% for 𝑘 = 7, indicating
that our approach is effective in perturbing the QA system. Note that this can be interpreted as
33.7% of the QA pairs can be changed to generate false answers amongst 208 questions, i.e., the
attack remains successful therein. As mentioned beforehand, the attack is considered successful
only when the answer of the targeted question is changed to another answer. However, we find
that if we consider the attack as successful when the answer is either changed or empty (i.e, no
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Figure 2: Attack success rate as a function of attack budget 𝑘 on DBpedia and Wikidata.

answer at all), then our attack can effectively change ∼ 70% of the QA pairs.
In contrast to DBpedia, the success rate on Wikidata remains lower across all budgets. Note

that, to this end, we find out that, if we consider the empty answers also successful, then only
around 60% of cases our attack remains successful, which is much lower than DBpedia’s 70% of
cases. The disparity in attack success rates between DBpedia and Wikidata stems from several
structural and semantic differences in the underlying knowledge graphs. For instance, this can
be attributed to structural and semantic differences in the two knowledge graphs, as well as our
strict definition of success—i.e., only considering cases where the system returns a valid but
incorrect answer (empty answers are not counted as successful).

Additionally, Wikidata has higher structural redundancy and a normalized schema (via
property IDs). In contrast, DBpedia’s sparser structure, flatter schema, and less standardized
predicates make it easier to mislead the system into returning plausible but wrong answers.
Moreover, Wikidata’s rich aliasing and complex SPARQL queries often preserve answerability,
whereas DBpedia’s simpler structure makes the system more vulnerable to minimal, targeted
deletions. These differences explain the higher success rates observed on DBpedia.

Finally, we see that with the attack budget 𝑘 of 7, we get the best results for both the DBpedia
and Wikidata. The performance fluctuates beyond that point and essentially degrades. This
suggests possible over-pruning or irrelevant triple removal. Moreover, this can be attributed to
the fact that we only consider the attack cases as successful where the system returns a valid
but incorrect answer. Beyond the attack budget of 7, we mostly get empty answers, therefore
lowering the attack success rate of the attack on the system.
These findings highlight the fact that KGQA robustness is not solely determined by the QA
model, but is deeply influenced by the structure and design of the underlying knowledge graph.

RQ 2. To answer this research question, we look into two metrics, functional stealthiness and



structural stealthiness. We measure the functional stealthiness by considering the performance of
the KGQA system under attack, using the GERBIL-QA framework [23]. An attack is considered
functionally stealthy if it successfully degrades performance on its intended targets while
causing minimal, or ideally zero, performance degradation on the QA pairs that were not
targeted. To this end, we measure the F1 score of the KGQA system.

Our evaluation using the GERBIL-QA framework on the QALD dataset demonstrates that
our adversarial attack exhibits strong functional stealthiness across a range of attack budgets.
Specifically, the F1 scores remain consistently high: 0.9851 for a budget of 𝑘 = 3, 0.9807 for
𝑘 = 5, and 0.9782 for 𝑘 = 7. These results suggest that our attack strategy causes minimal
collateral damage, preserving the correctness of unrelated QA pairs while still being effective.

While the GERBIL QA analysis confirms that all attacks are functionally stealthy, a compre-
hensive evaluation also requires assessing their structural impact on the underlying knowledge
graph. To this end, we analyze the integrity of the KG by measuring changes in three key
centrality metrics after an attack: PageRank [24], betweenness-centrality [25], and eigenvector-
centrality [26]. PageRank captures the global influence of a node based on the overall link
structure. Betweenness Centrality reflects the extent to which a node acts as a bridge along the
shortest paths between other nodes. Eigenvector Centrality identifies nodes that are not only
well-connected but also linked to other highly influential nodes. Considering the most success-
ful attack budget 𝑘 of 7, we find out that pagerank, betweenness-centrality, and eigenvector-
centrality measures change∼ 0.002,∼ 0.0003, and∼ 0.0530 before and after the attack. These
minimal changes indicate that the attacks preserve the global structural properties of the KG
to a large extent, reinforcing their stealthiness not only at the QA level but also in terms of
topological footprint. This suggests that such attacks can evade standard graph integrity checks,
highlighting the need for more sensitive detection methods.
RQ 3. An analysis of the successful adversarial attacks reveals that system failures occurred
predominantly on complex questions that required the integration of multiple pieces of informa-
tion, rather than on simple fact-based queries. In particular, vulnerabilities were most evident
in questions that demanded (a) comparison and ranking, such as those involving superlatives
like ‘longest’, ‘largest’, or ‘oldest’; (b) conjunctive reasoning, which requires satisfying multiple
constraints simultaneously, for instance, find out the films directed by a specific
individual and featuring a particular actor; and (c) relational inference, where
the system must interpret and navigate hierarchical or indirect relationships, such as familial
ties or organizational affiliations.

This failure pattern underscores a critical limitation in the system’s reasoning capabilities.
The KGQA demonstrates strong performance on questions that require retrieving discrete facts,
suggesting that such information is well-represented in the underlying knowledge graph or
embedding space. However, it struggles significantly when tasked with composing, aggregating,
or comparing facts across multiple entities or relations. This implies that the system’s internal
representation of knowledge is largely fragmented, storing facts in isolation rather than as part
of a cohesive, interconnected structure.

Consequently, the KGQA system lacks robustness when reasoning chains are required. For
questions that depend on multi-hop inference or the combination of multiple intermediate
facts, the answer becomes susceptible to disruption at any single point in the reasoning chain.
Therefore, an adversary requires only to compromise one component of this chain, such as



removing a critical triple or modifying a relation to induce a system failure. This not only
highlights a potential attack surface for adversarial interventions but also points to a deeper
architectural challenge in current KGQA systems, specifically the limited capacity for relational
composition and structured reasoning.

6. Conclusion

In this work, we present LoSA, a localized structural attack strategy designed to systematically
probe and expose vulnerabilities in SPARQL-based KGQA systems. Considering a realistic
black-box threat model, LoSA perturbs only a minimal subset of RDF triples directly related to
the query-specific subgraph, thereby effectively misleading the KGQA system into returning
incorrect answers. Our empirical evaluation on the state-of-the-art multilingual system MST5,
using both DBpedia and Wikidata KGs, demonstrates that such attacks can achieve high success
rates, especially on DBpedia, while preserving functional and structural stealthiness. The attacks
degrade performance on targeted queries without impacting unrelated QA pairs or disrupting
global graph topology, thereby evading common detection strategies. However, we also find
that using Wikidata in the KGQA system makes it inherently robust, as the graph is sparse
and well-connected. Therefore, even if the attacker changes some connections, the knowledge
graph remains partially intact after the poisoning.

Additionally, our analysis reveals that KGQA systems are particularly susceptible to adversar-
ial manipulation when confronted with complex questions involving comparison, conjunction,
or relational inference. These findings highlight fundamental limitations in the systems’ rea-
soning capabilities and their reliance on loosely connected factual representations. We believe
that this work can serve as a baseline, and more sophisticated attack approaches can be built in
this context. More importantly, through our work, we pose an urgent need for robust defense
mechanisms that can detect and mitigate such structurally minimal yet semantically impactful
attacks. As part of future work, we will explore advanced attack strategies as well as adaptive
defense strategies, such as graph sanitization, anomaly detection, and robust query planning, to
make the KGQA pipelines robust against adversarial threats.
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