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Abstract

Knowledge Graph Question Answering (KGQA) simplifies querying vast amounts of knowledge stored
in a graph-based model using natural language. However, the research has largely concentrated on
English, putting non-English speakers at a disadvantage. Meanwhile, existing multilingual KGQA systems
face challenges in achieving performance comparable to English systems, highlighting the difficulty of
generating SPARQL queries from diverse languages. We introduce a streamlined, multilingual KGQA
framework that injects linguistic context (e.g., POS tags, dependency relations) and candidate entity
identifiers directly into a single pretrained multilingual transformer. Unlike prior approaches that employ
separate encoders to handle auxiliary signals, our method lets the same model process both the question
and the supplemental data, markedly improving its ability to translate a natural-language query into an
accurate SPARQL statement. It demonstrates promising results on the most recent Wikidata-based QALD
datasets, namely QALD-9-Plus and QALD-10. Furthermore, we introduce and evaluate our approach on
Chinese and Japanese, thereby expanding the language diversity of the existing datasets.

1. Introduction

The aim of research in Knowledge Graph Question Answering (KGQA) is to establish an inter-
active methodology enabling users to access extensive knowledge stored within a graph-based
model via natural language queries [1]. Recent research efforts have witnessed a notable upsurge
in addressing KGQA concerns [2]. However, it is noteworthy that a substantial proportion of
these systems is confined to the English language domain [3, 4, 5, 6, 7, 8]. Furthermore, among
the currently available multilingual systems [9, 10, 11], only a limited subset of widely spoken
or written languages are supported [12, 13]. Moreover, majority of these systems do not achieve
performance levels comparable to those attained in English when addressing questions in other
languages. This difference highlights the inherent difficulty KGQA systems face in processing
the multilingual natural language queries by trying to recognize the hidden, repeated patterns
that are common across different languages. This poses a challenge for the vast majority of web
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users whose native language is not English.

Knowledge Graphs (KGs) have been conceptualized as language-agnostic solution for the
organization and storage of information [14, 15]. As a result, the approach to KGQA paves the
way for retrieving language-agnostic answers, contingent upon its ability to comprehend natural
language questions in a multilingual context. Recent advancements in the field of language
modeling have made numerous state-of-the-art language models freely accessible [16, 17, 18, 19].
These language models can be effectively employed within a sequence-to-sequence task setting
to tackle KGQA. In this setting, the input sequence corresponds to the natural language question,
while the output entails a relevant SPARQL' query required to extract the answer from an
underlying KG. This method of carrying out KGQA is also known as Semantic Parsing [20],
it generates an intermediate representation (i.e. SPARQL) that is interpretable by humans,
enabling them to understand how the model formulates specific answers within a multilingual
context.

To overcome the limited availability of multilingual KGQA and the shortcomings of existing
systems, we adopt a strategy similar to Rony et al. [8] that entails the inclusion of linguistic
context as an auxiliary input to a language model. Unlike the previous methods, however, we
employ a single encoder-decoder transformer model rather than creating separate encodings for
the auxiliary input. We do this in order to leverage the attention mechanism embedded within
the language model to facilitate the creation of an implicit understanding and representation of
the provided linguistic context. Furthermore, we apply entity disambiguation tools to extract
pertinent entity information, which is then also added to the auxiliary input. Our method
establishes a seamless end-to-end system that can respond to multilingual queries using only
the text of the input question.

Our findings demonstrate that incorporating linguistic context and entity information sig-
nificantly enhances the KGQA performance. Our approach yields promising results on our
benchmarking datasets. Moreover, to substantiate the efficacy of our approach, we introduce
and evaluate its performance in previously unrepresented languages within the QALD datasets.
Specifically, we added Japanese to the QALD-10 dataset and both Chinese and Japanese to
the QALD-9-Plus dataset. The inclusion of these non-European languages introduces a novel
dimension to the datasets, given their distinctive structural characteristics when compared to
the existing language set. Additionally, we make our source code publicly accessible for the
benefit of the research community.? In essence, our approach addresses the following research
question: How can the simplified integration of linguistic context and entity information into
language models enhance their performance on multilingual Knowledge Graph Question Answering
tasks?

2. Related Work

The KGQA task is commonly solved by Semantic Parsing approaches, that create logical queries
for given natural language questions [20]. Since SPARQL is used as a standard query language

"https://w3.org/TR/rdf-sparql-query/
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for the RDF-based Knowledge Graphs,® we investigate the systems that adopt this particular
approach to KGQA. In this section, we cover the relevant previous works that have developed
systems based on Language Model (LM) for the SPARQL query generation and the KGQA
systems that are multilingual.

2.1. LM-based SPARQL query generation

As one of the early works, Soru et al. [5] introduced Neural SPARQL Machines (NsPM) where
SPARQL is regarded as an analogous language, it utilized Neural Machine Translation (NMT) to
transform natural language questions into SPARQL queries, while avoiding language heuristics,
statistics, or manual models. The architecture consists of three components: a generator that
creates SPARQL queries from query templates for training the model, a learner based on
Bidirectional Recurrent Neural Networks (Bi-RNNs) [21] to learn to translate input questions to
encoded SPARQL, and an interpreter for reconstructing SPARQL queries from their encoded
representation and retrieving results from a knowledge graph. Their modular design allowed
integration of various machine translation models and generating SPARQL queries for diverse
knowledge graphs.

In the recent years, Borroto et al. [6] produced a similar Al system for KGQA, where the
architecture uses a NMT module based on Bi-RNNs [21]. They trained it in parallel to a Named
Entity Recognition (NER) module, implemented using a BILSTM-CRF network [22]. The NMT
module translates the input natural language question into a SPARQL query template, whereas
the NER module extracts the entities from the question. The two modules’ outputs are combined
to form the resulting SPARQL query. Departing from the template oriented methodology,
Rony et al. [8] proposed a novel approach to tackle the challenges associated with generating
SPARQL queries from natural language questions. The authors introduced a new embedding
technique that encodes questions, linguistic features, and optional knowledge to allow the
system to comprehend complex question patterns and graph data for SPARQL query generation.
They augmented the input embedding with the extracted embeddings and then fed it to a
decoder-only (GPT-2 [23]) language model to generate SPARQL query. However, it is important
to highlight that the investigation conducted in the study did not assess the effectiveness of
the resulting SPARQL queries in retrieving answers from a KG. This limitation stems from the
fact that the generated SPARQL queries are often syntactically incorrect. Furthermore, certain
other limitations are observed within this approach, particularly regarding the selection of the
language model architecture and the utilization of separate embedding layers for encoding the
linguistic context.

2.2. Multilingual KGQA

When it comes to the multilingual KGQA systems, Burtsev et al. [9] introduced a conversational
system called DeepPavlov that operates by utilizing a suite of extensive language-dependent
deep learning models. These models are used to execute a spectrum of tasks encompassing
query type prediction, entity recognition, relation identification, and path ranking that can be

*https://w3.org/RDF/
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applied to address KGQA alongside many other uses-cases. Developing it further, Zharikova
et al. [24] introduced DeepPavlov-2023, which is an improved version of its predecessor.

Pellissier Tanon et al. [10] presented a KGQA methodology named Platypus, which adopts
a dual-phase strategy. Initially, it leverages a semantic parser to convert questions posed in
natural language into SPARQL queries. Subsequently, these SPARQL queries are executed on
the Wikidata knowledge base to procure answers. The semantic parser employed is of a hybrid
nature, integrating grammatical (rule-based) and template-based approaches. Grammatical
approaches are utilized to extract the syntactic structure of the question and to identify any
mentioned entities and relations. Following this, template-based methods are employed to
populate predefined templates that are tailored to various types of questions. Building towards
an end-to-end multilingual KGQA solution, Diefenbach et al. [11] introduced an approach
named QAnswer that generates a SPARQL in four steps. First, it fetches the relevant resources
from the underlying KGs. Then, it generates a list of possible query templates. Afterwards,
the query candidates are created and ranked using the output from the previous two steps.
Finally, a confidence score is computed for each of the ranked queries. QAnswer claimed to be
state-of-the-art at the time, and remains a top contender in the QALD challenges. However, one
of the biggest downside of this system is not being open-source.

Looking at Machine Translation (MT) as a viable alternative, Perevalov et al. [12] experimented
with various MT systems to extend the supported languages of existing multilingual KGQA
systems. Their findings indicate that, in most cases, translating questions to English resulted
in the highest performance. Furthermore, they noted a small to moderate positive correlation
between the quality of machine translation and the question-answering score. In a similar
fashion, Srivastava et al. [13] adopted an entity-aware MT approach for the KGQA use-case.
Where they highlighted the need for effective translation for the entity labels between languages.
By using an entity-aware MT pipeline and translating each question to English, they created
a multilingual KGQA approach that performs better than the traditional MT-based methods
previously mentioned.

3. MST5 Approach

Our method, MST5, enriches a transformer-based model (mT5 [17]) with auxiliary knowledge
i.e., entity-link tags and linguistic context to build a semantic-parsing KGQA system. The
next subsections first give a formal mathematical definition of the task and then detail the
architecture that implements it.

3.1. Problem Definition

Given a natural language query () and auxilliary information A which consists of linguistic
context and entity information, we train the transformer-based model M parameterized by 6,
aiming to generate a syntactically and semantically correct corresponding SPARQL query S as:

S = argrrgz}xP(S’ | Q, A; 0)



Figure 1: An overview of the MST5 approach (from left to right). First, linguistic context and entity
information is extracted from the input question. Then, the extracted information is appended to the
input before being passed on to the language model. The language model generates the resulting
SPARQL query.
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Here P is the conditional probability distribution function and S’ represents a candidate
SPARQL query generated by the model.

The model is trained in a manner akin to mT5 [17], focusing on minimizing the negative
log likelihood (£) of the correct SPARQL query given the inputs:

L(0) = —log P(5 | Q, A;6)
Here S refers to the reference (correct) SPARQL query.

3.2. MST5 Architecture

To obtain the auxiliary information from a given input, we create individual modules to perform
entity recognition and disambiguation along with linguistic feature extraction. The extracted
information is then used to compose the final input sequence to our language model by con-
catenating it with the input question. Figure 1 provides a high-level overview of our approach.
Following are the detailed description of these steps:

3.2.1. Named Entity Recognition and Linking

In this step of our approach we make use of NER and Named Entity Disambiguation (NED)
approaches. To fulfill this requirement, we rely on the Named Entity Aware Machine Translation
(NEAMT)* tool introduced by Srivastava et al. [13]. While the primary purpose of this tool is to
perform entity-aware machine translation, its API allows us to skip the translation part entirely
and only perform entity recognition and linking tasks. Given its multilingual capabilities,
NEAMT meets our requirements.

*https://github.com/dice-group/LFQA/tree/main/naive-eamt
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3.2.2. Linguistic feature extraction

For enhancing the understanding of the language model, we explicitly include linguistic features
in a manner akin to the approach described by Rony et al. [8]. Unlike their approach, we directly
append the features to the input sequence. To this end, we extract Part-of-Speech (POS) tags
and generate the dependency tree for the input question. For extracting these features, we rely
on the spaCy tool.> For each distinct language, we use the respective spaCy model.®

3.2.3. Preprocessing the target SPARQL-queries

To generate SPARQL queries through a LM, existing works similar to Banerjee et al. [25] intro-
duce a separate vocabulary to make it easier for a LM to predict the resulting SPARQL. However,
we recognize that this incorporation introduces additional complexity. Thus, we employ mini-
mal preprocessing during training phase to avoid the need for an expanded vocabulary. SPARQL
queries often include prefixes to shorten resource identifiers (URIs). For example:

https://www.wikidata.org/entity/Q5 -> wd:Q5

To simplify the target sequences for the mT5 model, we remove the prefix section from the
query. We use the prefix form, e.g., wd : Q5 instead of the full URIs in the query. During inference,
we add all common prefixes back to the predicted query to restore its syntactic correctness. As
an additional step, we replace special characters such as the question mark (?), which signals
a variable in a SPARQL query, and curly braces ({}), with standardized string placeholders.
This modification is due to our observation that the mT5 model struggles with accurately
predicting these symbols. During the inference phase, we revert these placeholders to their
original symbols to facilitate the retrieval of answers from a SPARQL endpoint.

3.2.4. Creating Input Data for the MST5 Model

As input to our model is a token sequence, we concatenate the textual question with the linguistic
features and entity links with the help of custom separator tokens. As a result, each input
sequence incorporates the features listed below. Figure 2 offers an overview of these features:

Question, e.g., Who are the grandchildren of Bruce Lee?

POS tags, e.g., PRON AUX DET NOUN ADP PROPN PROPN PUNCT
Dependency tree tags, e.g., attr ROOT det nsubj prep compound pobj punct
Depths in the dependency tree,e.g., 21323542

Entity links, e.g., Q16397

AN A

Padding tokens are appended to each input feature, ensuring that the tokens for every input
feature begin at a consistent token index within the tokenized input sequence. This step enables
the transformers-based LM to attend and contextualize the relation between the original query
and the auxiliary features properly. Finally, we apply a tokenizer to the concatenated sequence

*https://spacy.io/
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Figure 2: An example of linguistic context including dependency parsing (red) and POS-tags (green)
alongisde the disambiguated entity for the text: Who are the grandchildren of Bruce Lee?
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to produce valid inputs for MST5 model. We use the SentencePiece [26] tokenizer for mT5 [17]
model as described in the model documentation.”

4. Experimental Setup

This section provides a comprehensive description of the training and benchmarking datasets
used in our experiments, along with an in-depth explanation of our model training method-
ologies. We have organized our model training into two main categories: Ablation Study and
Evaluation of Optimal Models. This structure helps with systematic investigation of the effects
of various model configurations and enables us to concentrate on the best-performing models
for additional analysis. Our current experimental setup is aimed at addressing the following
research questions:

1. Whether the simplified auxilliary input of linguistic context and entity information has any
effect on the KGQA performance?

2. How the top-performing ablations compare to other systems?

3. How the optimal ablations perform in a multilingual setting?

4.1. Training and Evaluation Datasets

To train the MST5 model, we utilize the LC-QuAD 2.0, QALD-9-Plus, and QALD-10 datasets.
Below, we outline these datasets and detail any modifications applied:

"https://huggingface.co/docs/transformers/model_doc/mt5
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LC-QuAD 2.0: Introduced by Dubey et al. [27], is the largest English-only KGQA dataset.
It consists of over 30,000 natural language questions paired with their corresponding Wiki-
data SPARQL queries. We choose this dataset primarily to train the model on contextualizing
SPARQL queries alongside natural language queries before proceeding to train on a smaller,
multilingual dataset.

QALD-9-Plus: Introduced by Perevalov et al. [28], QALD-9-Plus dataset includes the questions
in English, German, Russian, French, Spanish, Armenian, Belarusian, Lithuanian, Bashkir and
Ukrainian. The training set for Wikidata consists of 371 questions, while the test set has 136
questions. We update the QALD-9-Plus dataset by adding Chinese and Japanese translations
of each question. These translations were done by a native speaker of these languages. Since
the test set contains the answers from an older (unavailable) version of Wikidata, we update
the QALD-9-Plus dataset using endpoint provided for QALD-10® as both of these datasets were
created concurrently. Subsequently, we filter out all the questions with empty answer-set. The
refined test dataset now comprises 102 questions. We refer to this version as QALD-9-Plus
(updated) test dataset in the upcoming sections.

QALD-10: Introduced by Usbeck et al. [2], it comprises of questions in English, German, Chi-
nese and Russian. It uses QALD-9-Plus as its training data, and provides a test dataset of 394
questions. We update the QALD-10 dataset by adding Japanese translation for each question.
These translations were done by a native speaker of the respective language.

To benchmark our models, our approach requires datasets that are multilingual and provide a
reference SPARQL query alongside the retrieved answer-set for the respective natural language
question. These criteria are essential to show that our models can generate SPARQL queries
that are not only similar to the reference but also possess the capability to fetch the accurate
answer. To fulfil these requirements, we make use of QALD-9-Plus (updated) test and QALD-10
dataset for evaluation. A key distinction among these QALD datasets lies in the evaluation
metric employed for comparison. The QALD-9-Plus dataset utilizes Macro F1 for assessing
the performance across various KGQA systems, whereas the QALD10 dataset suggests Macro
F1 QALD’ as per community’s request.!’ To conduct the evaluation and obtain performance
metrics on these datasets, we make use of the GERBIL-QA [29] tool.

4.2. Model Training Details

We selected the pretrained mT5'! as the foundational model for our work. Its pretraining
involved the mC4'? corpus, encompassing 101 diverse languages. During the fine-tuning phase,
we set the maximum number of epochs to 300 while setting up an early-stop regularization

8https://github.com/KGQA/QALD-10#endpoint
*https://github.com/dice-group/gerbil/issues/320
https://github.com/dice-group/gerbil/issues/211
https://huggingface.co/google/mt5-xI
Zhttps://tensorflow.org/datasets/catalog/c4#c4multilingual
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method to prevent overfitting. Also, we use the DeepSpeed'® tool introduced by Rajbhandari
et al. [30] to optimize the computing resource usage. As for the hardware, we make use of the
Nvidia-A100'* GPU for training our models.

4.3. Ablation Study

To assess the impact of the proposed input augmentations on the end-to-end KGQA performance
of our approach, we conduct an ablation study. Our study involves training and testing every
potential variant that includes the following modifications:

« Fine-tuning on LC-QuAD 2.0 dataset

« Fine-tuning on QALD-9-Plus dataset

+ Adding linguistic context to the input

« Incorporating entity tags into the input

We evaluate these ablations'® on the English questions from QALD-9-Plus (updated) test
dataset to compare their performance. We exclude the multilingual questions due to resource
limitations, as for each additional language all the ablations would need to be evaluated. We
also exclude QALD-10 dataset from the ablation study because its training data is a combination
of the QALD-9-Plus training and testing data.

4.4. Optimal Models Evaluation

From the ablation study, we select the model(s) demonstrating the best performance and subject
them to further evaluation, during this evaluation we cover all the supported languages. For
QALD-9-Plus (updated) test dataset, we compare the performance of our optimal models with
only one other KGQA system: DeepPavlov-2023 [24]. We were not able to include any other
relevant system [11, 10, 9] as we couldn’t extract the generated SPARQL queries for updated
QALD-9-Plus dataset.'® For QALD-10, we refine our optimal model(s) by additional training
on a merged dataset of QALD-9-Plus train and test data. The further fine-tuning allowed us to
perform a direct comparison with the results of the other existing models in a fair manner. We
made use of the QA-System-Wrapper!” tool to query the DeepPavlov-2023 system.

5. Results and Discussion

Our discussion of the results is structured into three sections: Initially, in subsection 5.1, we focus
on the performance metrics for English. Then, in subsection 5.2, we examine the performance of
our best ablations across various languages. Finally, in subsection 5.3, we discuss the challenges
encountered during our evaluation with external systems and the measures we implemented to
prevent our system from contributing to the same problem.

Bhttps://deepspeed.ai/

“https://nvidia.com/en-us/data-center/a100/

3See appendix table 4

!$Either unreachable public APIs, technical issues in the local deployment or no SPARQL query generation.
https://github.com/WSE-research/qa-systems-wrapper
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Table 1
QALD-10 macro performance comparison (English).

Approach F1 Precision Recall F1 QALD

Borroto et al. 0.4538 0.4538 0.4574 0.5947
Diefenbach et al. 0.5070 0.5068 0.5238 0.5776
Shivashankar et al. 0.3215 0.3206 0.3312 0.4909
Baramiia et al. 0.4277 0.4289 0.4272 0.4281
DeepPavIOV—2023 [24] 0.3241 0.3279 0.3369 0.4518
MST5enT 0.4784 0.4777 0.4848 0.6330
MST5ING+ENT 0.5271 0.5271 0.5317 0.6727

5.1. English-based Performance

As a first step, we perform the ablation study to find out whether the simplified auxilliary input
of linguistic context and entity information has any effect on the KGQA performance. We evaluate
all our model ablations on the QALD-9-Plus (updated) English dataset.'® Based on the results
(Macro F1), we observe the following:

« Linguistic context and entities always improve the performance of the system

« In most cases, combination of linguistic context and entities leads to the best performing
model

+ Between the models fine-tuned on both datasets, the entity-only variant has slightly
better performance

Now, to investigate how the top-performing ablations compare to other systems, we pick the
two best performing models MST5;5.g9+ent, MST512+00+1.1ng+EnT and simplify their names to
MST5gnts MST5 1 1nGsenT FEspectively. Table 1 presents a comparative analysis of various models
tested on the QALD-10 dataset. In this comparison, we find that:

« MSTS5 significantly outperforms the competing systems

« Model variant incorporating both linguistic context and entity information emerges as
the top performer

5.2. Multilingual Performance

We proceed by examining how the optimal ablations perform in a multilingual setting. Table 2
provides direct comparison of our models MST5gyr and MST5,1ng:ent With DeepPavlov-2023 [24]
on all supported languages'’ or QALD-9-Plus (updated). The results show the following:

« MSTS5 variants perform better than DeepPavlov-2023 for both languages supported by it
(English, Russian)

!8See appendix table 5 for direct comparison of the model ablations.
The language codes used in the datasets and our experiments are as per the ISO 639-1 standard https://en.
wikipedia.org/wiki/List_of ISO_639-1_codes
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Table 2
Performance (Macro F1) comparison of MST5 with DeepPavlov-2023 on the QALD-9-Plus (updated) test
dataset on all supported languages

DeepPavlov—2023 [24] MSTSENT MSTSLING+ENT

ba - 0.1842 0.1579
be - 0.2907 0.2807
de - 0.4126 0.3851
en 0.3716 0.4187 0.4015
es - 0.3600 0.3498
fr - 0.4167 0.4167
ja - 0.0654 0.0752
It - 0.3115 0.2792
ru 0.3117 0.3761 0.3467
uk - 0.3467 0.3369
zh - 0.3344 0.3115

+ When comparing the MST5 variants to each other:

— Performance in German and French is quite comparable to English

— Performance in Spanish, Russian, Lithuanian, Ukrainian, Belarusian, and Chinese is
a bit lower than English

— For Bashkir and Japanese the performance is very low in comparison

For Bashkir, the low performance is due to bad quality of the entity recognition and linguistic
context extraction through the third-party tools. For Japanese, the lower F1 score is because
of the small size of QALD-9-Plus (updated) test set, as many resultant SPARQL queries for
Japanese did not work.

Finally, in the Table 3, we have evaluation results for multilingual setting on QALD-10. We
observe that our models not only outperform the DeepPavlov-2023, but also achieve comparable
results on all supported languages. The performance on Japanese is lower in comparison to
other languages, but still significantly better than the QALD-9-Plus (updated) test dataset. We
attribute this improvement in performance to the larger size (=4x) of the QALD-10 test dataset.

5.3. Discussion

Beyond the overall scarcity of multilingual SPARQL-generation systems, our evaluation tables
reveal gaps in the reported results of other KGQA approaches. We mainly face this issue with
our QALD-9-Plus (updated) dataset. For the QALD-10 dataset, the issue is with the lack of
performance data on non-English languages.

This shortfall stems from several contributing factors:

1. KGQA systems [4, 9] not providing a SPARQL, making it hard to run on a custom dataset
and SPARQL endpoint;
2. Unresponsive endpoints [11, 10] or source code that doesn’t work;



Table 3
QALD-10 performance (Macro F1 QALD) comparison for all supported languages.

DeepPavlov—2023 [24] MSTSENT MSTSLING+ENT

de - 0.5908 0.6048
en 0.5092 0.6330 0.6727
ja - 0.4224 0.4964
ru 0.4118 0.6296 0.6600
zh - 0.5877 0.6398

3. No maintained knowledge-base endpoint for the evaluation dataset [28];
4. Absence of multilingual performance numbers for the evaluated systems [2].

Due to these factors, reproducing or generating new results on existing multilingual systems
becomes impossible. To mitigate this, it is beneficial to have open-source and well-documented
systems, complemented by datasets that offer a maintained SPARQL endpoint or the relevant
knowledge-base data dumps.

In our approach, we offer an open-source and thoroughly documented codebase. Additionally,
our experimental framework, as detailed in Section 4, enables the replication and straightforward
comparison of results, serving as a valuable reference for future research work.

6. Limitations

One major limitation of MSTS5 is its dependence on third-party tools for entity recognition,
disambiguation, and linguistic-context extraction, which vary across languages. This hampers
scalability when new languages are added and yields poor performance on low-resource lan-
guages such as Armenian and Bashkir, obstructing truly multilingual support. To overcome
this, we will adopt a multi-task framework that employs a single LM to jointly extract context
and perform entity recognition + disambiguation, eliminating external tools and improving
generalization to low-resource languages. Future work will enrich the auxiliary input with
entity types and relations and explore NLP techniques like Semantic Role Labeling [33] to
further boost SPARQL query quality.

7. Conclusion

In this paper we introduce a streamlined multilingual KGQA approach built on the pretrained
multilingual language model mT5 [17]. By feeding auxiliary linguistic and entity information
directly into the model, we let the LM learn the necessary representations autonomously,
eliminating the need for separate encoders. An extensive ablation study shows that this auxiliary
input markedly boosts end-to-end performance on the latest QALD benchmarks, and our
comparisons with existing KGQA systems highlight its superior results. We also emphasize
the lack of multilingual KGQA systems and the paucity of cross-lingual evaluation data, which
hampers comprehensive benchmarking. To mitigate these issues we discuss common pitfalls
and propose a multi-task extension as a foundation for future research.
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A. General Appendix

Table 4
All covered MST5 ablations based on the auxiliary features (linguistic context and entity information)
and fine-tuning dataset used during the model training.

Name Ling. Ctxt. Ent. Info. LC-QuAD 2.0 QALD-9-Plus
- No No No No
MST5q9 No No No Yes
MST5,, No No Yes No
MST5(5.q9 No No Yes Yes
- No Yes No No
MSTSQ%ENT No Yes No Yes
MST52.eNT No Yes Yes No
MST5(2:qQo+ENT No Yes Yes Yes
- Yes No No No
MST5q0:LING Yes No No Yes
MST515,11NG Yes No Yes No
MST5(2:qo+LING Yes No Yes Yes
- Yes Yes No No
MST5Q9+LING+ENT Yes Yes No Yes
MST5L2+LING+ENT Yes Yes Yes No
MST512:qo+LING+ENT  Yes Yes Yes Yes

Table 5
Macro performance metrics of MST5 ablations on the QALD-9-Plus (updated) test dataset (English):
divided into three groups based on fine-tuning data, separated by horizontal lines

Ablation name F1 Precision Recall F1 QALD

MST5, 2, enT 0.1886 0.2001  0.1982 0.322
MST515.LING 0.2291 0.2355 0.2353 0.367
MST5 2, LING+ENT 0.2622 0.2747 0.2698 0.4088
MST5,, 0.1353 0.134 0.1373 0.2359
MST5q0.enT 0.3173 0.3318 0.3164 0.4554
MST5q9+LING 0.206 0.2188 0.2043 0.2759
MST5qo+LING+ENT 0.3203 0.3424 0.3216 0.4624
MST5q9 0.0098 0.0098 0.0098 0.0194
MST52:Qo+ENT 0.4187 0.4366 0.4242 0.572
MST502.Q04LING 0.3407 0.3571  0.3493 0.4745
MST52:qo+LING+ENT ~ 0.4015 0.4192 0.4046 0.5563

MST5(2.q9 0.2628 0.2792  0.2631 0.3663
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