RoboData: Toward Trustable Question Answering
over Ontologies through Metacognitive Agentic
Epistemology

Emanuele Musumeci’, Vincenzo Suriani? and Daniele Nardi’

ISapienza University of Rome, Department of Computer, Control and Management Engineering, Italy

University of Basilicata, Department of Engineering, Italy

Abstract

Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP), simplifying
knowledge extraction from structured and unstructured sources. Despite pervasive usage in various
applications, from Question Answering (QA) to goal-driven reasoning, they tend to produce hallucinations,
factually incorrect responses that hindering accuracy and explainability of Knowledge-Based QA (KBQA)
tasks. To address this limitation, we introduce RoboData, an Agentic Al approach to verifiable knowledge
extraction and reasoning over structured ontologies like Wikidata. Through metacognitive self-reflection
and goal-directed commonsense reasoning, a LLM-based epistemic agent dynamically self-orchestrates a
query answering process. Unlike traditional information retrieval systems, the proposed architecture
incrementally builds a local knowledge graph from remote knowledge sources to answer a natural
language query with traceable facts, highlighting a “support set” for each claim, a set of nodes and edges
in the local knowledge graph that backs the generated claims. The resulting accumulated knowledge
provides an intermediate explainability layer, providing a reliable epistemic substrate for using trusted
ontologies in goal-driven query answering applications, such as robotic planning and semantic map
enrichment. Code is available at: https://emanuelemusumeci.github.io/RoboData/

Keywords
Agentic Al Large Language Models, Knowledge Graph Query Answering, Wikidata

1. Introduction

LLMs have reshaped knowledge access and generation. Through commonsense reasoning,
they act both as a source of knowledge and as universal regressors for NLP tasks, providing,
for instance, implicit heuristics for extracting knowledge from structured and unstructured
sources. Scaling laws of LLM capabilities show steady improvements on simple tasks [1] with
an increase in the number of parameters and training datasets (both in size and complexity),
yet their reliability on complex or highly factual tasks remains challenging [2], especially
when specialized knowledge is involved. Recent efforts have sought to align LLMs with more
specialized knowledge, through fine-tuning. Instruction tuning [3], while resource-intensive,
has proven to be the best way to give new skills to foundational LMs. However, this is not an

Wikidata’25: Wikidata Workshop 2025 at ISWC 2025

& musumeci@diag.uniromal.it (E. Musumeci); vincenzo.suriani@unibas.it (V. Suriani); nardi@diag.uniromal.it
(D. Nardi)

& https://sites.google.com/view/emanuelemusumeci/home (E. Musumeci)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

https://emanuelemusumeci.github.io/RoboData/
mailto:musumeci@diag.uniroma1.it
mailto:vincenzo.suriani@unibas.it
mailto:nardi@diag.uniroma1.it
https://sites.google.com/view/emanuelemusumeci/home
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

option when the knowledge is constantly updated, as it would require continuous post-training
LLM alignment. In-context Learning [4, 3], offers a reliable alternative to fine-tuning for both
unstructured [5] and structured data [6]. Methods like ReAct [7] prove that LLMs can act
“agentically”: orienting their reasoning to plan and execute tasks strategically [8], performing
actions with real effects on the execution environment. Agentic Al provides the means for
unsupervised goal-driven knowledge collection and integration. Despite their potential, LLMs
are limited by the size of their context windows (the maximum number of allowed input tokens):
long contexts increase hallucination risks [2]. This problem can be mitigated by accurately
engineering prompts to provide only relevant contextual information to the LLM agent [5] or
by better organizing the task into a sequence or chain of thoughts [9, 10, 11]. Recent works
about Knowledge Graph QA (KGQA) are based on the Data-Information-Knowledge-Wisdom
(DIKW) paradigm [12], modeled as a pyramid. At the base, the Data layer contains unprocessed
knowledge (facts), providing an informational grounding layer. The Information layer, more
structured, organized (e.g. relations) and contextualized (e.g. semantics) acts as a substrate for
complex reasoning and inference (e.g. Knowledge Graphs). In the Knowledge layer, information
is synthetically integrated through explicit procedures or heuristics, or implicit criteria as in
LLMs (e.g. Query Answering over KGs). Finally, the Wisdom layer ethically aligns knowledge,
ensures trustability among other things. In KGQA, Data and Information layers are represented
by the KG, while the two upper layers feature a LLM-based pipeline. In fact, commonsense
reasoning in LLMs provides an implicit heuristic for all tasks requiring knowledge generalization.
While the ”Knowledge” abstraction is plausibly embodied by LLMs, it is more arguable that
these systems may embody the ”Wisdom” abstraction as well. Due to the undesirable behaviors
exhibited by the latest generation of LLMs, including opaque agentic behaviors, or manipulative
tendencies [7], ethical alignment is needed, but this may not be enough for solving trustability-
critical tasks. To address answer verifiability in LLM-based KGQA, we present RoboData, a novel
Agentic Al system for Query Answering, grounded on a local Knowledge Graph. RoboData
actively performs knowledge extraction and reasoning over structured KGs, constructing a
localized and verifiable epistemic substrate to support robust query resolution, by agentically
exploring remote ontologies and fetching necessary information to build ”support sets”, subsets
of the local Knowledge Graph directly referenced in the generated answer as ground truth for
each generated claim, with the ultimate goal of allowing more trustable systems based on both
commonsense and specialized knowledge. We present preliminary evidence of RoboData’s
potential as an epistemic trustability layer for Agentic Al through the following contributions:

+ The architecture shown in Figure 1, where a LLM-based agent orchestrates a Query
Answering effort. The process produces both a local KG, built from remote reliable data
sources, and an answer, supported by "support sets”, subsets of the local KG.

« An agent capable of reasoning through self-reflection on its past actions, dynamically
correcting its strategy by reflecting on its own course of action.

We argue that this metacognitive approach, based on commonsense reasoning, may allow
managing more diverse data sources in the future, even ephemeral or unreliable ones. Agentic,
verifiable QA systems like RoboData represent a crucial step toward reliable reasoning over
structured knowledge but require additional epistemic traceability to be extensively employed.
The code associated to this work is available at: https://emanuelemusumeci.github.io/RoboData/.

https://emanuelemusumeci.github.io/RoboData/

Metacognition

Current
strategy

Strategy

Analizer

WISdom Strategic

evaluation

Orchestration
history

Y

Explore/Query
Fetch Data
S
Agentic o Toolb Tool
Self | orchestrator | ocibox iy Calls
Knowledge Reflect - Remote Ontology
Graph Tool Explore/Query Wikidata
Data Calls y Update
P31 P27
Polly wd:Q5 Jelinstanceoh) (1 .\, | (Cltizenshie) f o145
Adams P40
Data P31 (child) P1477
birth name)
+ . .
i P Nwaquae... Douglas Noél Epistemic
Information Adams Substrate

Figure 1: The KGQA agentic framework follows the DIKW architecture. The ”Data + Information” layer
is implemented as a knowledge graph. The "Knowledge” layer consists of a LLM-based orchestrator,
using tools to inspect local and remote data. The "wisdom” layer provides feedback on the QA strategy.

2. Related Work

KG construction and enrichment. LLMs have the ability to replace the entire DIKW pyramid
in KGQA tasks. For instance, LLMStore [13] treats a pre-trained LLM as a factual source by
synthesizing Wikidata-like statements on-the-fly. Other methods extract facts from text via
LLM-based pipelines. EDC+R uses a semantic extractor, a LLM and a trained Schema Retriever
to extract triples from a document and map them to existing Schemas, producing structured
and contextualized knowledge from an input document [14]. GraphAide [15] merges relations
extracted from LLMs and documents, into an explicit KG, enabling hybrid query answering.
In CooperKGC [16], specialized agents concurrently extract entities, relations and events, to
build a KG, using ontologies to verify claims. In [17], relevant relations are selected from the
Wikidata ontology to build a local KG, mirroring real-time updates remote or local information
updates. The LLM answer is chosen if the KG can not generate one. The data selection method,
though, is case-specific. RoboData adaptively queries Wikidata, integrating remote data, rather
than interrogating a pre-built static KG, engaging in active graph construction. Additionally,
RoboData self-reflects on the best course of action, correcting its data collection strategy.

Question Answering over KGs. LLMs may directly answer single-hop questions but struggle
with multi-hop reasoning [18]. Better performance can be obtained by eliciting topological

reasoning: the QA task is decomposed in a sequence of thoughts, sequential like in Chain-of-
Thoughts [9], explored like a tree as in Tree-of-Thoughts [10] or like a graph as in Graph-of-
Thoughts [11]. Similar work injects information from KGs into LLMs, used as commonsense
reasoners, providing an implicit goal-driven heuristic for knowledge integration and extraction
for QA tasks. The main limitation is the LLM context window length: long contexts, in fact, may
increase hallucinations [19]. Using the best KG encoding format for LLMs is crucial when they
act both as a goal reasoner and as an answer generator. For instance, the GRAG architecture
[20] retrieves relevant textual subgraphs from a pre-existing Knowledge Graph, using a divide-
and-conquer approach, and feeds them in both a linearized textual format and in a structured
topological view. KAG (Knowledge-Augmented Generation) [6] goes further, with a modular
hybrid framework, comprising an entity selector, a semantic graph constructor and a multi-level
contextual aligner, to extract semantically relevant subgraphs and align their representation with
LLM-generated embeddings, for QA tasks where accuracy is critical. MindMap [21] produces
“evidence subgraphs” from a KG: an LLM extracts entities from a query and then merges them
into a “reasoning subgraph”, enriched with commonsense knowledge, finally producing an
answer from this enriched graph. These approaches show that injecting structured knowledge
in a prompt can anchor LLM output to a knowledge base and reduce hallucinations. RoboData
instead acquires knowledge procedurally constructing a knowledge base dynamically as part of
a self-orchestrated reasoning process. In this way, the answer to the query is both a natural
language answer and a supporting knowledge graph.

Agentic KG Reasoning. Similarly, in Think-on-Graph [22] a LLM is initially used to search
for candidate KG triples that may be relevant to answering the query, then the LLM iteratively
evaluates the most promising reasoning paths, by performing beam-search.Both these works
allow traceable and explainable multi-hop query answering by performing iterative graph
exploration, growing a local KG as a result. RoboData adds metacognitive reflection: it does not
stop at finding an answer but checks answer plausibility and may loop back if the reasoning is
unsupported by the underlying data. Other systems use a "toolkit” for KG queries to collect
contextual information. SPINACH [23] mimicks a human writing a SPARQL query to answer a
question, by exploring Wikidata through tool-calling to progressively refine the query. The
collected knowledge, though, is not structured as a Knowledge Graph. Generate-on-Graph
(GoG) [24] tackles QA over an incomplete KG, by generating missing triples via a Think-Search-
Generate loop. Similarly, ODA [25] frames QA as an iterative cycle of Observe-Act-Reflect,
while keeping the subgraph pruned to avoid exponential growth. Both GoG and ODA create a
supporting KG but they rely on a well-structured workflow and their self-reflection power is
limited to the control of subsequent iterations. KG-Agent [26] uses a small instruction-tuned
LLaMA model with a toolbox of KG operations to generate a KG Reasoning program, featuring
tool calls that extract knowledge from a KG, collecting the results in a Knowledge Memory,
finally used to produce a response. Finally, AGENTiGraph [27] builds a multi-step pipeline,
very similar to RoboData. A Task Planning step initially decomposes the original query into a
series of discrete tasks, which are then delegated to specific agents (e.g. Semantic Parsing, KG
Interaction, Reasoning Agent, etc.). Similarly to SPINACH, it plans the steps required to acquire
enough context to build Cypher queries to query a local database. While AGENTiGraph operates
on a pre-existing domain KG, RoboData collects data from remote ontologies like Wikidata.
More in general, RoboData ranks among these Agentic systems for KGQA but emphasizes

robust orchestration and data provenance. It builds on the insight that LLMs can drive KG
exploration agentically, but it uniquely centers on verifiability: every intermediate assumption
in the query answering process is grounded in an external ontology.

If we consider KGQA a long-term task, metacognition might play an important role. In [28],
answers produced for a Multi-Choice QA dataset with LLM models are evaluated after apply-
ing self-reflection, addressing potential answer optimization criteria, showing a performance
improvement. In [29], agents accumulate observations in a long-term memory, populated by
periodically running an introspective evaluation in relation to the assigned objectives. By
influencing subsequent decisions, strategic adaptation capabilities emerge in long-term tasks.
Here, the metacognitive functionality is clearly distinguished as a typical component of ”System
77, the rational "slow” component of any cognitive system, in comparison with ”System 27,
the fast reactive one [30]. Only few KGQA systems exhibit some form of self-reflection or
metacognitive behavior: ODA [25] incorporates an explicit "reflect” phase to refine its strategy
after observations, GoG [24] engages in iterative assess-and-generate cycles when the KG is
insufficient. SPINACH [23] refines the SPARQL query in a multi-turn process guided by past
outcomes. RoboData incarnates this kind of strategic self-reflection, adding metacognitive
self-evaluation, in order to optimize the effectiveness of its execution strategy.

3. Methodology

The system is designed to self-orchestrate, exploring the remote Wikidata ontology or the local
KG, or to update it, progressively constructing the local graph, enabling explainable query
resolution. Through self-reflection and metacognition, the agent is capable of correcting its own
strategy, by reasoning on the past execution. As shown in Figure 1, the framework is organized
in layers, following the DIKW paradigm.

Epistemic Substrate. Acting as the Data+Information layer in the DIKW taxonomy, the
accumulated local graph, initially empty, is progressively populated during the Query Answering.
The local KG represents data using a common schema, to potentially accomodate multiple remote
knowledge sources. The local KG can be accessed through exploration tools, callable by the
agent, returning data in a readable text format, similarly to GRAG [20].

Agentic Layer. Acts as the main operational component, representing the Knowledge layer
in the DIKW paradigm. This layer comprises several modules. The main one is the Agentic
Orchestrator, modeled as a Finite-State Machine (FSM), shown in Figure 2, managing how the
Agent interacts with the LLM. Each state has a specific prompt and set of tools that the agent
can use. Exploration states can inspect the remote ontology and the local data while the Update
state fetches remote data and integrates it locally. Prompts are divided in a System Prompt,
containing task instructions for the specific state, an Assistant Prompt, containing various types
of working memory and a snapshot of the current KG in a readable format, and a User Prompt,
containing the original query. An Agentic Memory contains a trace of the previous tool
calls and state transitions, providing an overview of the past execution. To prevent prompts
from becoming too long, the memory actively summarizes old entries using a LLM; in case
the previous state fetched data from a remote knowledge source, this information is added to
the prompt; a metacognitive observation, a high-level evaluation about the past execution trace,

wh = Claim #1: His father is Kristofers D. Adams.
im;::ﬁmee Evaluate /m /Explora Support set: (Q42, P22, Q14623675)
; |—> Local T
rell;:)t:lvelzsof Data we/ Local Claim #2: His mother is Janet Adams.
A dais, raP Support set: (Q42, P25, Q14623678)
Enough
v e,f,‘.Zf % data Claim #3: His spouse is Jane Belson.
neeceC N __ Support set: (Q42, P26, Q14623681)
Update /Explor p d . His child is Polly Ad
Local ‘; Remote [Pro uce | \ Final . His child is Polly Adams.
\ \ Answer j answer |Support set: (Q42, P40, Q14623683)
Data Data - /
exploring . —
I etry wd:Q1462675
Enough Evaluate h :
dgt dan Agentic
Remote
Data Orchestrator

wd:Q14623683,

Figure 2: Initially, the query is evaluated in Local Data Evaluation and the KG is empty: the orchestrator
transitions to Remote Data Evaluation. Here, the proper tool calls are executed. Remote data is evaluated
in Remote Data Evaluation. Then the self-orchestration determines the remaining steps.

produced by the Metacognitive Layer before every evaluation state in the orchestrator. Finally,
the LLM is informed about the possible successor states and is instructed to specify the next
state. Depending on the received answer, tool calls are run, the memory is updated, and the
transition is performed. At specific states, the LLM can decide whether the agent is ready to
produce an answer. In this case, the LLM is explicitly instructed to return a response, where
each sentence must be associated to a “supporting set” of nodes and edges of the local KG, acting
as a grounding set for the answer. In the orchestrator, the agent dynamically determines the
order in which states are visited and tools are called and performs self-reflection, by observing
previous successes or failures or evaluating data completeness. Workflows are replaced with a
dynamic transition system, as the state sequence is therefore determined by the commonsense
reasoning capabilities of the LLM. The orchestrator is allowed to run a predefined number of
turns, after which it is forced to produce an answer. The orchestration process, represented in
Figure 2, is articulated in the following stages:

Local Data Evaluation: Evaluates whether the local knowledge graph contains enough
information to answer the query. If the graph is empty, the system proceeds directly to the
Remote Exploration state. If there is enough data to answer the original query, the orchestrator
visits the Produce Answer state. Finally, if the local KG contents exceed the maximum allowed
token count, the Local Graph Exploration is visited.

System Prompt: Evaluate if the local graph data is enough to answer the query. [Exploration strategy
suggestions]. If you feel that key relationships are missing from the local graph, you can suggest using
remote tools to gather more data and go back to remote exploration. [List of possible transitions].
[Invitation to keep KG topologically consistent].[Invitation to self-reflection)].

Assistant Prompt: Self-reflection, memory context, local graph data, local exploration results, and
optional metacognitive strategy.

Local Graph Exploration: The agent uses tools to explore the local KG, gathering additional
information relevant to the query but not initially visible in the truncated graph. The agent can

choose to transition again to the Local Data Evaluation state or to keep exploring.

System Prompt: Explore the local knowledge graph to answer the query. Use available tools to find
relevant information. Avoid redundancy. [List of possible transitions). [Invitation to self-reflection]

Assistant Prompt: Self-reflection, memory context, local graph data, and local exploration results.

Tools: get_node (retrieve node details by ID), get_edge (retrieve edge details by ID), cypher_query
(execute Cypher queries on graph database)

Remote Data Exploration: The agent can invoke tools to collect data from the remote
ontology. It can then decide to transition to the Local Data Evaluation state or to keep exploring.

System Prompt: The local graph is insufficient. Use remote tools to gather relevant data that fills
gaps. Focus on entities/relationships related to the query. [List of possible transitions]

Assistant Prompt: Self-reflection, memory context, and local graph data.

Tools: get_entity_info (get Wikidata entity information), get_property_info (get Wikidata
property information), search_entities (search Wikidata entities by text), sparql_query (ex-

ecute SPARQL queries on Wikidata), explore_entity_neighbors (explore entity relationships),
build_local_graph (build local graph around entity)

Remote Data Evaluation: The relevance of remote retrieved information to the original
query is evaluated. If the data is considered relevant, the system transitions Local Graph
Update state to integrate it into the local KG. Otherwise, the system can decide whether to keep
exploring or go back to the Local Data Evaluation state.

System Prompt: Evaluate if remote data is relevant for building a knowledge graph for the query.
[List of possible transitions]. [Invitation to self-reflection].

Assistant Prompt: Previous thoughts, local graph data, remote graph data, memory context, and
optional metacognitive strategy.

Tools: get_node (retrieve node details by ID), get_edge (retrieve edge details by ID), cypher_query
(execute Cypher queries on graph database)

Local Graph Update: The selected remote entities and relations related to the query are
fetched into the local graph, then the agent transitions back to the Local Data Evaluation state.

System Prompt: Update the local graph with relevant remote data. Only add entities/relationships
directly related to the query. Avoid isolated nodes and redundancy. [Update strategy suggestions].
[Invitation to keep KG topologically consistent].

Assistant Prompt: Self-reflection, local graph data, remote graph data, and memory context.

Tools: fetch_node (add Wikidata entity to local graph), fetch_relationship_[to|from]_node
(add all statements for a property from/to a specific node to local graph)

Answer Production: Final state, where the agent generates an answer. Each sentence is
associated to a set of entities and relations in the local data, acting as proof for that claim.

System Prompt: You are an expert agent that produces comprehensive answers using data from a
local knowledge graph. Your task is to create a final answer where each sentence is backed by specific
evidence from the local graph. [Detailed format and consistency constraints]. [Format example].

Assistant Prompt: Self-reflection, local graph data, and memory context.

Metacognition. FSM-based orchestration balances freedom of agentic action with guidance
over reasoning paths, through. Hallucinations induced by excessive context lengths, due to
the need to provide the KG to the LLM in data-related prompts, increase with complex queries
requiring long answers and big underlying knowledge graphs. As a mitigation, a corrective
strategy is generated by the metacognition module and embedded in subsequent Orchestrator
prompts. The metacognition happens in evaluation states at two distinct levels: the first one
is performed inline in the orchestrator. A self-reflection behavior in the LLM is elicited, by
instructing the Agent to reflect on the past execution trace to determine corrective advices for
the next selected state in the orchestrator, with the desired outcome of correcting the short-
term strategy in reaction to failures or stagnation in the query answering process. Then, each
time the agent reaches an evaluation state, in the ”Wisdom” layer, explicit metacognition is
performed to provide a higher-order strategic evaluation of the overall agentic strategy, by
analyzing the sequence of past states, tool calls and graph updates. If a previous metacognitive
observation is available, the inferred strategy is compared against it. The module finally produces
a metacognitive observation, a corrective plan to optimize suboptimal tendencies in the agent
strategy. This observation is then injected into the prompts of the orchestrator evaluation states.
As turns run out, a variable "turn urgency” message (depending on how many orchestrator
turn are left), urges the LLM to consolidate the KG, avoiding isolated nodes and unconnected
components, leading to a better consistency in output KGs. Metacognition components:

1. Strategic Assessment. Infer the current strategy from statistics and memory.

System Prompt: Analyze the sequence of actions and identify the underlying strategic approach.
Focus on: high-level strategy, tool usage preferences, data retrieval patterns, knowledge graph
construction strategy, and performance indicators. Turn urgency.

Assistant Prompt: Action sequence, execution statistics (state and graph statistics, tool usage),
available tools, memory context, local graph data, local/remote exploration results.

2. Meta-Observation. The strategy is compared to previous ones, and corrective feedback
is generated, enabling the agent to navigate complex queries and reorient sub-optimal behavior.

System Prompt: Evaluate current strategy against task outcome and previous observations. Consider:
strategy coherence, performance assessment, strategic continuity, opportunity identification, and tool
optimization. Turn urgency.

Assistant Prompt: Detected strategy, previous metacognition, task outcome assessment, available
tools, memory context, local graph data, local/remote exploration results.

Table 1

Batch A: Results for the basic KGQA functionality experiments.

OK Query A1: Who is the author of *The Hitchhiker’s Guide to the Galaxy?’

Answer: The 1979 novel 'The Hitchhiker’s Guide to the Galaxy’
is authored by Douglas Adams. (1) The series 'The Hitchhiker’s
Guide to the Galaxy, which spans from 1979 to 1992, is also
authored by Douglas Adams. (2) Additionally, Eoin Colfer is an
author of the series 'The Hitchhiker’s Guide to the Galaxy.' (3)

Support Sets: (1) <The Hitchhiker’s Guide to the Galaxy
(Q3107329), author (P50), Douglas Adams (Q42)>, (2) <The
Hitchhiker’s Guide to the Galaxy (Q25169), author (P50), Dou-
glas Adams (Q42)>, (3) <The Hitchhiker’s Guide to the Galaxy
(Q25169), author (P50), Eoin Colfer (Q211893)>

Iterations: 6 Tools: 4 Tokens: 15043 Time (s): 1

254 Nodes: 4 Edges: 3

OK Query A2: Who are the relatives of Douglas Adams?

Answer: Douglas Adams’ father is Kristofers Duglass Adamss.
(1) His mother is Janet Adams. (2) Douglas Adams was married
to Jane Belson. (3) He has a daughter named Polly Adams.

Support Sets: (1) <Douglas Adams (Q42), father (P22),
Kristofers Duglass Adamss (Q14623675)>, (2) <Q42, mother
(P25), Janet Adams (Q14623678)>, (3) <Q42, spouse (P26),
Jane Belson (Q14623681)>,

Iterations: 8 Tools: 7 Tokens: 17652 Time (s): 1

4.88 Nodes: 5 Edges: 4

Query A3: Who are the relatives of Douglas Adams and what books did he write?

Answer: Polly Adams is a relative of Douglas Adams, specif-
ically his child. (1) Douglas Adams wrote "The Hitchhiker’s
Guide to the Galaxy.” (2) Douglas Adams is also the author
of the "Dirk Gently series.” (3) Additionally, Douglas Adams
co-authored "The Private Life of Genghis Khan.”

Support Sets: (1) <Douglas Adams (Q42), child (P40), Polly
Adams (Q14623683)>, (2) <Q42, notable work (P800), The Hitch-
hiker’s Guide to the Galaxy (Q25169)>, (3) <Q42, P800, Dirk
Gently series (Q20736364)>,

Iterations: 6 Tools: 5 Tokens: 14166 Time (s): 1

4.06 Nodes: 5 Edges: 4

OK Query A4: Among the founders of tencent company, who has been member of national people’s congress?

Answer: Ma Huateng is a founder of Tencent. (1) Ma Huateng
has held the position of National People’s Congress deputy. (2)

Support Sets: (1) <Tencent (Q860580), founded by (P112), Ma
Huateng (Q1739008)>, (2) <Q1739008, position held (P39), Na-
tional People’s Congress deputy (Q10891456)>

Iterations: 28 Tools: 32 Tokens: 101825 Time (s

): 84.02 Nodes: 11 Edges: 9

Query A5: In which federal state is the

Veltins brewery headquarter?

Answer: The Veltins Brewery has its headquarters in
Meschede. (1) Meschede is a town located in the Hochsauer-
land district. (2) The Hochsauerland district is in North Rhine-

Support Sets: (1) <Veltins Brewery (Q608350), headquarters
location (P159), Meschede (Q5632)>, (2) Meschede (Q5632), (3)
Q5632

Westphalia, Germany. (3)

Iterations: 6 Tools: 4 Tokens: 10303 Time (s): 1

1.36 Nodes: 2 Edges: 1

Query A6: Which philosophers influenced by Kant were also mathematicians?

Answer: David Hilbert was a philosopher influenced by Im-
manuel Kant and was also a mathematician. (1) Hermann
Weyl was influenced by Immanuel Kant and is described as
a German mathematician. (2) Luitzen Egbertus Jan Brouwer
was influenced by Immanuel Kant and is identified as a Dutch
mathematician and logician. (3) (...)

Support Sets: (1) <David Hilbert (Q41585), influenced by
(P737), Immanuel Kant (Q9312)>, Q41585, (2) <Hermann Wey|
(Q71029), P737, Q9312>, Q71029, (3) <Luitzen Egbertus Jan
Brouwer (Q155887), P737, Q9312>, Q155887,

Iterations: 22 Tools: 29 Tokens: 124613 Time (s

): 70.51 Nodes: 32 Edges: 33

WRONG Query A7: Which Italian and Japanese cities are twinned?

Answer: The local knowledge graph does not show any city

Support Sets: (1) P190 (P190)

that is twinned with both Italian and Japanese cities. (1)

Iterations: 28 Tools: 148 Tokens: 643275

Time (s): 148.49

Nodes: 480 Edges: 623

4. Experiments

This section evaluates the proposed system across varying query complexity and ambiguity.
By default, metacognition is disabled while self-reflection is enabled, as it is an established
practice in the current state of the art. Experiments are conducted using GPT-40 as a Reasoning
Model. The orchestrator is allowed to run for a limited number of turns, after which it is
forced to produce an answer with the collected data. The only remote ontology used in these

experiments is Wikidata, accessed through the official API. To embed Knowledge Graphs in
prompts, we follow an approach similar to [20], by first listing nodes and relationship types in
the graph and then listing all the triples (relationship instances), instead of using a knowledge
graph dump. To keep the context as short as possible, the agentic memory is summarized
after 30 entries are added, halving its length. In the first batch of queries, Batch A (A1-A7),
we test RoboData on a curated set of single and multi-hop queries, at an increasing level of
complexity and scope, to assess its basic KGQA capabilities. The results are reported in Table
1, containing for each experiment, the original query, the answer with its supporting set, and
several statistics, including number of iterations and tool calls, exchanged tokens and execution
time, number of nodes and edges added. In this batch, we allow the orchestrator to run for at
most 30 turns. Queries A1-A4 assess the Question Answering capability of this system at an
increasing level of complexity. In particular, A1-A3 require a single hop to answer correctly
(basically a local exploration around the entity Q42 in Wikidata as all the required elements
for the answer are located one relation away from the main subject of the question). A2 and
A3 though require multiple relations to answer and A2 is contained in A3. The result shows
consistency in the intersection of the answers to A2 and A3. The answer to A3 is only partial:
the part of the answer in common with A2 is only partially found; therefore, the answer is
considered wrong. Query A4 instead requires multiple hops to answer correctly, showing
longer-term task execution capabilities. Queries A5-A7 are more complex both in the number
of hops required and in scope. A5 requires a chain of 4 hops to answer but only 3 are found:
this is due to the fact that all entities along the chain contain part of the answer already in
the textual description of the Wikidata entity (in our case, the name of the german federal
district containing the Veltins brewery), tricking the LLM into assuming that the answer is fully
supported by the node. In A6, the answer is incomplete. Both queries A5 and A6 highlight the
main limitation of this system, when operating without a metacognitive strategy observer: the
orchestrator alone tends to lose track of tasks involving multiple hops or big sets of entities and
properties. This is confirmed by query A7, showing how the limited context window negatively
affects tasks where more working memory is required to keep track of longer-term tasks over
big sets of entities (in this case, the big sets of cities to compare to find twin cities). In this query,
in fact, even if the full 30 iterations are reached and 148 tool calls are performed, collecitng 480
nodes and 623 edges, the limitations due to the working memory and context window prevent
the agent from returning an answer. With Batch B (B1-B3), reported in Table 2, we explore
the behavior of RoboData in tasks requiring more structural knowledge about the ontology:
we test three queries, not consisting of purely factual questions but more operational ones,
designed to trigger different exploration patterns. Query B1 tests the capability of performing
the simple exploratory operation of finding the subclasses of the immediate neighbors of the
Wikidata entity Q42, successfully exploring the neighborhood. Queries B2 and B3 instead test
the system’s ability to navigate Wikidata’s upper ontology and explain its taxonomic structure,
by asking to fetch the Wikidata upper ontology. In particular, B2 asks to find its root (without
knowing that the root is “entity” (Q35120)) and to fetch its immediate subclasses (referring to
the ”subclass of” property (P279)) and their subclasses, while B3 adds the ”instance of” property
(P31) to the request. Given the strictly operational nature of these request, both queries B2 and
B3 are executed correctly, which is probably due to the operational reasoning of the instruction
tuned GPT-40 model. Still, the model struggles over the more complex task in B3: this is

Table 2
Batch B: Results for the batch of operational experiments.

OK Query B1: Find all subclasses of the neighbors of Q42
Answer: The occupation "playwright” (Q214917) is a sub- | Support Sets: (1) playwright (Q214917) -> subclass of
class of “writer” (Q36180). (1) The occupation "screenwriter” | (P279) -> writer (Q36180), (2) screenwriter (Q28389) -> P279
(Q28389) is a subclass of “writer” (Q36180). (2) The occupation | -> Q36180, (3) novelist (Q6625963) -> P279 -> Q36180 (...)
“novelist” (Q6625963) is a subclass of "writer” (Q36180). (...)
Iterations: 5 Tools: 21 Tokens: 13123 Time (s): 26.82 Nodes: 20 Edges: 16

Query B2: Explore the ontology: Start from the root and list all direct subclasses.
Then for each subclass, list its direct subclasses
Answer: The root entity in the ontology is Q35120 (entity).” | Support Sets: (1) entity (Q35120), (2) <entity (Q35120),
(1) Q35120 (entity) is an instance of Q23958852 (variable-order | P31, Q23958852>, (3) <Q35120, P31, Q124711104>,
class). (2) Q35120 (entity) is also an instance of Q124711104 , (5) <Q23958852, subclass
(BFO class). (3) Q23958852 (variable-order class) is an instance | of (P279), Q16889133>, (6) <Q124711104, P31, Q19478619>,
of itself. (...)
Iterations: 10 Tools: 11 Tokens: 31380 Time (s): 48.5 Nodes: 5 Edges: 6
WRONG Query B3: Explore the ontology: Start from the root and list all direct subclasses and instances.
Then for each subclass, list its direct subclasses.

Answer: The root entity in the ontology is identified as | Support Sets: (1) entity (Q35120), (2) <entity
Q35120, which is described as anything that can be consid- | (Q35120), instance of (P31), BFO class (Q124711104)>,
ered, discussed, or observed. (1) Q35120 is an instance of both | <Q35120, instance of (P31), variable-order class
Q124711104 (BFO class) and Q23958852 (variable-order class). | (Q23958852)>, (3) <Q35120, subclass of (P279), no_value
(2) (...) (3) Several entities are instances of Q35120, including | (Q35120_P279 931456939447813722)>(...)

Q496651 (National Baptist Convention, USA), Q1647158 (V-
Modell), and Q3306469 (Prairie View State College).(...)

Iterations: 30 Tools: 55 Tokens: 165987 Time (s): 132.57 Nodes: 62 Edges: 30

mainly due to noisy and incorrect usage of the “instance of” and ”subclass of” relationships with
“entity”: as an example, the answer of B3 refers to the "National Baptist Convention, USA” entity,
represented as an “instance of” “entity”, which is formally true, as all Wikidata entities are an
instance of “entity” or one of its subclasses, but technically wrong, as it introduces noise in the
upper ontology. Finally, Batch C, in Table 3, repeats several failed or incomplete queries from
batch A and B, with the metacognitive layer enabled, allowing execution for 50 turns instead of
30. In general, metacognition brought an improved strategic guidance over longer-term tasks,
improving performance with queries requiring to explore a bigger set of entities. This time,
Query A5 is correctly answered, completing the required 4 hops to support the answer that in
Batch A was only semantically available in the entity descriptions but not formally supported
by the KG. Also, Query A6 is answered completely (to our knowledge), listing the missing
philosopher and mathematician influenced by Kant (Q155887), in even fewer iterations than
in Batch A. The operational task B2 shows an improvement: reaching the whole allowed 50
turns, it manages to find most of the subclasses of “entity” (but not all of them). Instead, answer
quality even drops for query B3, where the agent collected only 4 nodes and 3 edges, against the
62/30 collected without metacognition. Finally, answer quality improves for query A7, showing
a better management of the limited context window and of the long-term task. Results over
queries A5-A7 support the conclusion that agentic metacognition improves performance over
broader and longer KGQA and KG construction tasks, normally hindered by the limited working
memory, by summarizing and evaluating previous strategies with respect to the original task,
and adjusting the agentic strategy accordingly.

Table 3

Batch C: Metacognition experiments over selected failed or incomplete queries of Batch A and B.

OK Query A5: In which federal state is the Veltins brewery headquarter?

Answer: [CONSISTENT WITH QUERY A5] (...) (2) Hochsauer-
landkreis is part of the Arnsberg Government Region. (3) The
Arnsberg Government Region is located in the federal state of
North Rhine-Westphalia.

Support Sets: [CONSISTENT WITH QUERY A5] (...) (2)
<Q5632, located in the administrative territorial entity
(P131), Hochsauerlandkreis (Q5946)>, (3) <Q5946, (P131),
Arnsberg Government Region (Q7924)>,

Iterations: 46 Tools: 34 Tokens: 180733 Time (s

): 122.28 Nodes: 7 Edges: 5

OK Query A6: Which philosophers influenced by Kant were also mathematicians?

Answer: [CONSISTENT WITH QUERY A6] (...) (3) Luitzen
Egbertus Jan Brouwer was influenced by Immanuel Kant and
was also a mathematician. (...)

Support Sets: [CONSISTENT WITH QUERY Aé] (...)

)

Iterations: 14 Tools: 19 Tokens: 68844

Time (s):

38.5 Nodes: 31 Edges: 37

Query B2: Explore the ontology: Start fi
Then for each subclass, list its direct subclasses

rom the root and list all direct subclasses.

Answer: The root entity in the ontology is “entity”
(Q35120). (1) The direct subclasses of “entity” (Q35120) in-
clude “substance” (Q378078), “object” (Q488383), “continu-
ant” (Q103940464), "location” (Q115095765), "unidentified en-
tity” (Q120725535), "conceptual entity” (Q121770302), "part”
(Q13196193), "abstract entity” (Q7048977), and “collective en-
tity” (Q99527517). (2) (...

Support Sets: (1) entity (Q35120), (2) substance (Q378078),
object (Q488383), continuant (Q103940464), location
(Q115095765), unidentified entity (Q120725535), concep-
tual entity (Q121770302), part (Q13196193), abstract entity
(Q7048977), collective entity (Q99527517),(...)

Iterations: 50 Tools: 90 Tokens: 251921 Time (s

): 179.52 Nodes: 11 Edges: 10

Query B3: Explore the ontology: Start fi
Then for each subclass, list its direct subclasses.

rom the root and list all direct subclasses and instances.

Answer: The root entity “entity” (Q35120) is an instance of
the ”BFO class” (Q124711104). (1) The root entity (Q35120) is
also an instance of the "variable-order class” (Q23958852). (...)

Support Sets: (1) <entity (Q35120), instance of (P31),
BFO class (Q124711104)>, (2) <Q35120, instance of (P31),
variable-order class (Q23958852)>, (...)

Iterations: 50 Tools: 45 Tokens: 206342 Time (s

): 134.64 Nodes: 4 Edges: 3

Query A7: Which ltalian cities are twin

ned with Japanese cities?

Answer: Rome is twinned with Tokyo. (1) Turin is twinned
with Nagoya. (2) Naples is twinned with Kagoshima. (3) Terni
is twinned with Kobe. (...)

Support Sets: (1) <Rome (Q220), twinned administrative
body (P190), Tokyo (Q1490)>, (2) <Turin (Q495), (P190),
Nagoya (Q11751)>, (3) <Naples (Q2634), (P190), Kagoshima
(Q15674)>(...)

Iterations: 18 Tools: 68 Tokens: 103346 Time (s

): 6294 Nodes: 216 Edges: 210

5. Conclusions and Future Work

This work introduced RoboData, an Agentic

System for LLM-based trustable KGBA, that

simultaneously answers a natural language query and build a KG from a remote ontology, to
support the generated claims with facts. RoboData retrieves and organizes relevant information
from remote ontologies but also adapts its exploration strategy to overcome the limitations of

LLM context windows and long-term memory.

Experiments show that even when the system

struggles with longer-term tasks requiring broader exploration of remote data, our approach
mitigates them by leveraging the LLM’s metacognitive capabilities to plan corrective long-term
strategies. The explicit metacognitive layer improved performance on complex, multi-hop
queries and large-scale ontology exploration, yielding more complete and traceable answers.

RoboData has promising potential applications i
of semantic scene graphs to assist in goal-orien

n Robotics, allowing the unsupervised creation
ted reasoning and planning.

References

(1]

(2]

(3]
(4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, D. Amodei, Scaling laws for neural language models, arXiv preprint arXiv:2001.08361
(2020).

L. Chen, J. Q. Davis, B. Hanin, P. Bailis, I. Stoica, M. A. Zaharia, J. Y. Zou, Are more llm
calls all you need? towards the scaling properties of compound ai systems, Advances in
Neural Information Processing Systems 37 (2024) 45767-45790.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, Q. V. Le,
Finetuned language models are zero-shot learners, arXiv preprint arXiv:2109.01652 (2021).
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in
neural information processing systems 33 (2020) 1877-1901.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kittler, M. Lewis, W.-t.
Yih, T. Rocktéschel, et al., Retrieval-augmented generation for knowledge-intensive nlp
tasks, Advances in neural information processing systems 33 (2020) 9459-9474.

L. Liang, Z. Bo, Z. Gui, Z. Zhu, L. Zhong, P. Zhao, M. Sun, Z. Zhang, J. Zhou, W. Chen,
et al., Kag: Boosting llms in professional domains via knowledge augmented generation,
in: Companion Proceedings of the ACM on Web Conference 2025, 2025, pp. 334-343.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-
tenschmidt, S. Altman, S. Anadkat, et al, Gpt-4 technical report, arXiv preprint
arXiv:2303.08774 (2023).

S. Yao, J. Zhao, D. Yu, N. Du, L. Shafran, K. Narasimhan, Y. Cao, React: Synergizing
reasoning and acting in language models, in: International Conference on Learning
Representations (ICLR), 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., Chain-
of-thought prompting elicits reasoning in large language models, Advances in neural
information processing systems 35 (2022) 24824-24837.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, K. Narasimhan, Tree of thoughts:
Deliberate problem solving with large language models, Advances in neural information
processing systems 36 (2023) 11809-11822.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda,
T. Lehmann, H. Niewiadomski, P. Nyczyk, et al., Graph of thoughts: Solving elaborate
problems with large language models, in: Proceedings of the AAAI conference on artificial
intelligence, volume 38, 2024, pp. 17682-17690.

J- Rowley, The wisdom hierarchy: representations of the dikw hierarchy, Journal of
information science 33 (2007) 163-180.

M. Machado, J. M. Rodrigues, G. Lima, S. R. Fiorini, V. T. da Silva, Llm store: Leveraging
large language models as sources of wikidata-structured knowledge, in: International
Semantic Web Conference, 2024.

B. Zhang, H. Soh, Extract, define, canonicalize: An llm-based framework for knowledge
graph construction, arXiv preprint arXiv:2404.03868 (2024).

S. Purohit, G. Chin, P. S. Mackey, J. A. Cottam, Graphaide: Advanced graph-assisted query
and reasoning system, in: 2024 IEEE International Conference on Big Data (BigData),

IEEE, 2024, pp. 3485-3493.

[16] H.Ye, H. Gui, A. Zhang, T. Liu, W. Jia, Beyond isolation: Multi-agent synergy for improving
knowledge graph construction, in: China Conference on Knowledge Graph and Semantic
Computing, Springer, 2024, pp. 69-81.

[17] R. Chen, W. Jiang, C. Qin, I. S. Rawal, C. Tan, D. Choi, B. Xiong, B. Ai, Lim-based multi-hop
question answering with knowledge graph integration in evolving environments, arXiv
preprint arXiv:2408.15903 (2024).

[18] E.Biran, D. Gottesman, S. Yang, M. Geva, A. Globerson, Hopping too late: Exploring the
limitations of large language models on multi-hop queries, arXiv preprint arXiv:2406.12775
(2024).

[19] S. Liu, K. Halder, Z. Qi, W. Xiao, N. Pappas, P. M. Htut, N. A. John, Y. Benajiba, D. Roth,
Towards long context hallucination detection, arXiv preprint arXiv:2504.19457 (2025).

[20] Y. Hu, Z. Lei, Z. Zhang, B. Pan, C. Ling, L. Zhao, Grag: Graph retrieval-augmented
generation. 2024, URL https://arxiv. org/abs/2405.16506 (2024).

[21] Y. Wen, Z. Wang, J. Sun, Mindmap: Knowledge graph prompting sparks graph of thoughts
in large language models, arXiv preprint arXiv:2308.09729 (2023).

[22] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, L. M. Ni, H.-Y. Shum, J. Guo, Think-on-
graph: Deep and responsible reasoning of large language model on knowledge graph,
arXiv preprint arXiv:2307.07697 (2023).

[23] S.Liu, S.]J. Semnani, H. Triedman, J. Xu, L. D. Zhao, M. S. Lam, Spinach: Spargl-based infor-
mation navigation for challenging real-world questions, arXiv preprint arXiv:2407.11417
(2024).

[24] Y. Xu, S. He, J. Chen, Z. Wang, Y. Song, H. Tong, G. Liu, K. Liu, J. Zhao, Generate-on-graph:
Treat llm as both agent and kg in incomplete knowledge graph question answering, arXiv
preprint arXiv:2404.14741 (2024).

[25] L. Sun, Z. Tao, Y. Li, H. Arakawa, Oda: Observation-driven agent for integrating llms and
knowledge graphs, arXiv preprint arXiv:2404.07677 (2024).

[26] J.Jiang, K. Zhou, W. X. Zhao, Y. Song, C. Zhu, H. Zhu, J.-R. Wen, Kg-agent: An efficient
autonomous agent framework for complex reasoning over knowledge graph, arXiv preprint
arXiv:2402.11163 (2024).

[27] X. Zhao, M. Blum, R. Yang, B. Yang, L. M. Carpintero, M. Pina-Navarro, T. Wang, X. Li,
H. Li, Y. Fu, et al., Agentigraph: An interactive knowledge graph platform for llm-based
chatbots utilizing private data, arXiv preprint arXiv:2410.11531 (2024).

[28] M. Renze, E. Guven, Self-reflection in llm agents: Effects on problem-solving performance,
arXiv preprint arXiv:2405.06682 (2024).

[29] J. Toy,]J. MacAdam, P. Tabor, Metacognition is all you need? using introspection in
generative agents to improve goal-directed behavior, arXiv preprint arXiv:2401.10910
(2024).

[30] G.Booch, F. Fabiano, L. Horesh, K. Kate, J. Lenchner, N. Linck, A. Loreggia, K. Murgesan,
N. Mattei, F. Rossi, et al., Thinking fast and slow in ai, in: Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 2021, pp. 15042-15046.

	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusions and Future Work

