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Abstract
Many recent efforts explore the task of Taxonomy Derivation from Wikipedia Category
Network (TDWCN), which induces rich hypernymy relations between instances and classes
from Wikipedia to integrate hierarchical information into knowledge graphs. However, current
methods rely heavily on language-dependent information including heuristic rules, human
annotations and inter-language links, which limit their applications. In this paper, we propose
a language-independent model for TDWCN. Specifically, we design an adversarial learning
approach to distill hypernymy relations from noisy raw Wikipedia, avoiding any language
dependencies. Besides, we incorporate multi-task learning to explore the correlation among
instanceOf, subClassOf, and the relations of instances. In addition, we contribute an English
evaluation dataset ENT5k with about 6000 categories. Experimental results on 4 different
languages demonstrate that our model can be applied generally to any language and achieve
better or comparable performance compared with previous language-dependent models.

1. Introduction
Taxonomies hierarchically organize hypernymy (consisting of instanceOf and subClassOf)
among instances and classes, which are the core pieces of large-scale knowledge graphs [1],
and have been proven beneficial for various NLP tasks such as question answering [2],
document understanding [3] and information extraction [4]. Taxonomy derivation is a
crucial task to integrate hierarchical and abstract information into knowledge graphs.

Current approaches for taxonomy derivation can be divided into three lines: (1) manual
construction [5, 6]; (2) extracting separate hypernymy from unstructured text and then
organizing the collection into a complete taxonomy [7, 8]; (3) recognizing hypernymy from
Wikipedia Category Network (WCN). Because WCN in Wikipedia is large-scale, domain-
independent, dynamically generated and with high coverage, Taxonomy Derivation from
WCN (TDWCN) has attracted lots of research [9, 10, 11, 12], which is the focus of this
paper.

As shown in Figure 1, WCN is a directed graph linking Wikipedia articles (e.g., Micky
Mouse) with inter-connected categories of different granularities (e.g., Disney comics
characters, Disney characters, Disney comics). The links from articles to categories are
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Figure 1: TDWCN filters out the non-hypernymy from WCN and outputs the taxonomy. The red
lines represent non-hypernymy.

articleOf, and those between categories are subCategoryOf. By treating each article
and category as one candidate instance and class, each articleOf and subCategoryOf
as one candidate instanceOf and subClassOf respectively, we can obtain a large-scale
taxonomy with millions of instances and classes without extra human efforts. However,
not all articleOf and subCategoryOf links are correct hypernymy relations. If we do not
filter out the non-hypernymy in WCN, wrong facts might be inferred (e.g., “(Micky
Mouse, instanceOf, The Walt Disney Company)”). Therefore, TDWCN needs to recognize
whether each articleOf and subCategoryOf in WCN is a correct hypernymy relation, which
can be formed as a hypernymy classification task consisting of InstanceOf Classification
and SubClassOf Classification.
Most previous methods for TDWCN [9, 13, 10, 11] rely on heuristic rules mainly

designed for English (e.g., syntactic and lexicon patterns). They can hardly be applied
to non-English languages. Recently, supervised methods are proposed, which rely on
labeled corpus from expensive human annotations [14, 15] or sparse inter-language links
in Wikipedia [12]. Both rule-based and supervised methods rely on language-dependent
information including heuristic rules, human annotations and inter-language links, which
is quite time-consuming and labor-intensive. For example, if we design heuristic rules,
annotate a corpus or use inter-language links to construct a dataset for one certain
language, we can not directly apply them to another language, since the syntactic, lexicon
and the patterns for different languages are quite different. These language dependencies
limit their applications.

To address the above issues, we propose a language-independent method through multi-
task adversarial learning to perform TDWCN. Specifically, we pretrain a coarse classifier
over the raw WCN, based on which we split the training data into a reliable set and an



unreliable set. Then, we use adversarial learning to iteratively distill the two training sets
and refine the classifier (i.e., the discriminator) through a min-max game between the
discriminator and sampler. Our model can purify the large-scale raw WCN and is general
enough to any language without the limitation of heuristic rules, human annotations
or inter-language links. In addition, considering that (1) InstanceOf Classification and
SubClassOf Classification can mutually enhance each other because instances and classes
are highly correlated; (2) the rich semantics provided by relational facts among instances
through Knowledge Embedding may benefit Hypernymy Classification, we propose a
multi-task learning framework to learn Knowledge Embedding, InstanceOf Classification
and SubClassOf Classification simultaneously. These three sub-tasks fully integrate
the connections from multiple views of instance-instance, instance-class and class-class
information flow respectively to further improve the performance of TDWCN.

For evaluation, the previous datasets for TDWCN are small (e.g., 200 articles in [12]).
We use crowd-sourcing to annotate a high-quality English dataset ENT5k for TDWCN
with 5,989 articles, 5,983 categories, 27,696 articleOf and 19,857 subCategoryOf. Ex-
perimental results on 4 languages demonstrate that our model can be applied generally
to different languages without any annotations and achieve better or comparable per-
formance, compared with previous language-dependent models designed specifically for
certain languages. Ablation studies further demonstrate the effectiveness of our adversarial
learning strategy and multi-task learning framework.

2. Related Work
Taxonomy Derivation. Taxonomies organize classes and instances in the real world in
hierarchical structure, and directly affect the computational ability of knowledge graphs.
Therefore, the derivation of large-scale, high-coverage and high-quality taxonomies is
essential. Current methods for taxonomy derivation can be divided into three cate-
gories. One category focuses on manual construction [5, 6], which is time-intensive and
domain-dependent. The second category, taxonomy derivation from text, usually in-
cludes two steps: hypernymy relation extraction from text and taxonomy induction. The
representative works include [7, 16, 17, 18, 19, 20, 21], etc.. Our paper focuses on the
third category, taxonomy derivation from WCN. Most previous works utilize heuristic
hand-crafted rules, such as the syntactic structure of category labels, the topology and
lexico-syntactic patterns [9], the lemmas from the first sentences of articles (WiBi [22]),
linking with external resources (MENTA [13]), inter-language links and link surface
forms (MultiWiBi [10]) and so on [23, 24, 1, 11]. Recent supervised methods rely on
human annotations [14, 15] or inter-language links (MultiTax [12]), where the former
is expensive and the latter is sparse. MultiTax, given an English taxonomy as a source
taxonomy, leverages inter-language links to construct the dataset for the target language
and then trains classifiers. Different from MENTA, MultiWiBi and MultiTax, our method
avoids language-dependent information including heuristic rules and inter-language links.
Different from WiBi and MultiWiBi which also consider the correlation between instances
and classes, we use deep representation learning to vectorize them, which serve as a basis



that connects InstanceOf and SubClassOf classification.
Note that Wikipedia has links from each article to the corresponding Wikidata item and

Wikidata has taxonomic relations among its items. However, these relations focus only on
the articles of Wikipedia and ignore categories. We believe the rich taxonomic relations
among articles and categories in Wikipedia are crucial for large-scale and high-coverage
taxonomies and can complement with the existing taxonomy in Wikidata.
Adversarial Training. For adversarial training, prior works in computer vision add imper-
ceptible adversarial perturbations to input images, relying on the fact that such small
perturbations cannot change an image’s true label. [25] add noise in the form of small
perturbations to the input data, and the generated adversarial examples let models
make wrong predictions. Then, [26] attempt to analyze adversarial examples and propose
adversarial training for image classification tasks. These works inspire subsequent works
for NLP tasks, such as text generation [27], knowledge graph embedding [28], etc.

Different from previous works, we exploit the ability of adversarial training to distinguish
nuances between input data and refine a pretrained coarse classifier. We split the unlabeled
training data into a reliable set and an unreliable set, and use adversarial training to
iteratively distill the two training sets through a min-max game between a discriminator
and a sampler.

3. Notations and Definitions
Definition 1. WCN is a directed graph defined as 𝒲 𝒞𝒩 = ⟨𝒜,𝒞 ,ℛ𝒜,ℛ𝒞⟩: Each
𝑎𝑗 ∈ 𝒜 is an article in Wikipedia. Each 𝑐𝑗 ∈ 𝒞 is a category grouping articles and other
categories on similar topics, which can be represented as a word sequence {𝑤1, … , 𝑤|𝑐𝑗|}.
ℛ𝒜 = {𝑟𝑎𝑗 |𝑟

𝑎
𝑗 = (𝑎𝑘, 𝑐𝑙), 𝑎𝑘 ∈ 𝒜, 𝑐𝑙 ∈ 𝒞 }, 𝑟𝑎𝑗 is articleOf between article 𝑎𝑘 and category 𝑐𝑙.

ℛ𝒞 = {𝑟 𝑐𝑗 |𝑟
𝑐
𝑗 = (𝑐𝑘, 𝑐𝑙), 𝑐𝑘, 𝑐𝑙 ∈ 𝒞 }, 𝑟 𝑐𝑗 is subCategoryOf between two categories 𝑐𝑘, 𝑐𝑙.

Definition 2. Taxonomy is a directed acyclic graph defined as 𝒯 = ⟨ℐ , ̃𝒞 ,ℛℐ,ℛ ̃𝒞⟩: (1)
Each 𝑖𝑗 ∈ ℐ is an instance. Each ̃𝑐𝑗 ∈ ̃𝒞 is a class. (2) ℛℐ = {𝑟 𝑖𝑗 |𝑟

𝑖
𝑗 = (𝑖𝑘, ̃𝑐𝑙), 𝑖𝑘 ∈ ℐ , ̃𝑐𝑙 ∈ ̃𝒞 }, 𝑟 𝑖𝑗 is

instanceOf between instance 𝑖𝑘 and class ̃𝑐𝑙. ℛ
̃𝒞 = {𝑟 ̃𝑐

𝑗 |𝑟
̃𝑐

𝑗 = ( ̃𝑐𝑘, ̃𝑐𝑙), ̃𝑐𝑘, ̃𝑐𝑙 ∈ ̃𝒞 }, 𝑟 ̃𝑐
𝑗 is subClassOf

between two classes ̃𝑐𝑘, ̃𝑐𝑙.

As shown in Figure 1, articles and categories in WCN can be viewed as candidate in-
stances and classes respectively; articleOf and subCategoryOf are candidates of instanceOf
and subClassOf. Namely, ℐ ⊆ 𝒜, ̃𝒞 ⊆ 𝒞, ℛℐ ⊆ ℛ𝒜 and ℛ ̃𝒞 ⊆ ℛ𝒞. We want to recognize
whether each articleOf is a correct instanceOf and whether each subCategoryOf is a
correct subClassOf. Therefore, the main task Hypernymy Classification can be formalized
as follows.

Definition 3. Hypernymy Classification is to learn two functionsℐ𝒞 and 𝒮𝒞 for instanceOf
classification and subClassOf classification respectively: ℐ𝒞(𝑟𝑎𝑗 ) ↦ {+1, −1}, 𝑟𝑎𝑗 ∈ ℛ𝒜, +1
denotes articleOf 𝑟𝑎𝑗 is a correct instanceOf and -1 not. 𝒮𝒞(𝑟 𝑐𝑗 ) ↦ {+1, −1}, 𝑟 𝑐𝑗 ∈ ℛ𝒞, +1
denotes subCategoryOf 𝑟 𝑐𝑗 is a correct subClassOf and -1 not.
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Figure 2: The overall framework. The discriminator learns to recognize reliable hypernymy from
�̃� (+) as positive, and samples from the sampler as negative. The sampler aims to learn a probability
distribution 𝑃𝒰 over the samples in �̃� (−), where the informative samples have higher probability
to be selected compared with noisy ones for cheating the discriminator.

4. Methodology
We conduct taxonomy derivation in three steps: (1) Network cleanup, a pre-processing
step to filter out meta-categories related to Wikipedia management; (2) Hypernymy
classification, the core step to learn both InstanceOf and SubClassOf classification; (3)
Taxonomy induction, a post-processing step to induce a globally-optimized taxonomy.

For network cleanup, we follow [9] to use several light-weighted rules. For taxonomy
induction, we follow [12] to use greedy selection strategies. These two steps are not our
focus and will not be unfold in this paper due to space limit.

For Hypernymy Classification, as shown in Figure 2, we learn three sub-tasks Knowledge
Embedding, InstanceOf Classification and SubClassOf Classification simultaneously in a
multi-task learning framework to fully incorporate the connections among instances and
classes. For Knowledge Embedding, we introduce an external knowledge graph with rich
semantic relations among instances. For InstanceOf and SubClassOf classification, they
follow the same learning process and model architecture. Specifically, we pretrain a coarse
classifier based on the raw WCN and a negative sampling strategy. According to the



output of the classifier, we split the training data into a reliable set and an unreliable set.
Then, we use adversarial learning to iteratively distill the two training sets and refine the
classifier (i.e., the discriminator) through a min-max game between the discriminator and
sampler. In Section Coarse Pretraining and Adversarial Refining, we take SubClassOf
Classification as a representative to introduce the details. In Section Multi-task Learning,
we introduce the overall learning objective in the multi-task learning framework.

4.1. Coarse Pretraining

The coarse pretraining aims to learn a coarse classifier to predict whether each relation
in WCN is a hypernymy.

4.1.1. Category Encoding

Firstly, we capture the semantics for each category from its word sequence. Specifically,
given the word sequence {𝑤1, ⋯ , 𝑤|𝑐𝑗|} of category 𝑐𝑗 ∈ 𝒞, we represent all words with their
word embeddings {𝑤1, … , 𝑤|𝑐𝑗|}, and then feed the embeddings into a neural encoder to
obtain the category representation 𝑐𝑗. Without loss of generality, we select convolutional
neural networks (CNN) [29] as the neural encoder.

4.1.2. Hypernymy Encoding

Next, we encode each category pair in WCN to get the representations of hypernymy
candidates. Given a relation (𝑐𝑗, 𝑐𝑘) ∈ ℛ𝒞, we take their difference as the relation embedding
𝑟𝑐𝑗,𝑐𝑘. Formally, we calculate the relation embedding with equation 𝑟𝑐𝑗,𝑐𝑘 = 𝑐𝑗 − 𝑐𝑘1.

4.1.3. Hypernymy Scoring

Finally, we learn a scoring function to predict whether a subCategoryOf relation is a
correct subClassOf. Given (𝑐𝑗, 𝑐𝑘) ∈ ℛ𝒞, we measure its possibility of subClassOf relation
by

𝑆(𝑐𝑗, 𝑐𝑘) = 𝜎(𝑟𝑐𝑗,𝑐𝑘 ⋅ 𝑟𝑐). (1)

where 𝜎(⋅) is the sigmoid function. 𝑟𝑐 is a vector which is randomly initialized and to be
learned.

We observe that most of subCategoryOf are correct subClassOf and most of subClassOf
are already contained in subCategoryOf. Due to the lack of supervised labels, we assume
the equivalence between the subClassOf set and subCategoryOf set to coarsely train our
classifier, and then enhance it in a finer granularity by multi-task adversarial learning
which will be explained in the following.

Specifically, let𝒰 (+) and𝒰 (−) be the positive and negative sample sets of the subClassOf
classifier. We have 𝒰 (+) = ℛ𝒞 and 𝒰 (−) = {(𝑐𝑗, 𝑐𝑘)|𝑐𝑗, 𝑐𝑘 ∈ 𝒞 , (𝑐𝑗, 𝑐𝑘) ∉ ℛ𝒞}. As there are

1For InstanceOf Classification, given a relation (𝑎𝑗, 𝑐𝑘) ∈ ℛℐ, the relation embedding 𝑟𝑎𝑗,𝑐𝑘 = 𝑀𝐿𝑃(𝑎𝑗) − 𝑐𝑘
where 𝑎𝑗 is the instance embedding initialized by Knowledge Embedding as will be introduced in Section
Multi-task Learning and 𝑀𝐿𝑃(⋅) is a multilayer perceptron to project the instance embedding to the space
of category embedding.



a huge amount of negative samples and most of them can be easily recognized, we
design an efficient negative sampling strategy to sample the most informative ones
from 𝒰 (−). Specifically, for each category pair (𝑐𝑗, 𝑐𝑘) ∈ 𝒰 (+), we choose (1) one reverse
hypernymy pair for predicting the directionality of hypernymy; (2) one co-hypernymy
pair for distinguishing hypernymy from semantic relatedness relations; (3) one randomly
corrupted pair for distinguishing hypernymy from other relations. The loss function of
coarse pretraining is:

ℒ𝐶 = − ∑
(𝑐𝑗,𝑐𝑘)∈𝒰 (+)

log (𝑆(𝑐𝑗, 𝑐𝑘))

− ∑
(𝑐𝑗,𝑐𝑘)∈𝒰 (−)

log (1 − 𝑆(𝑐𝑗, 𝑐𝑘)).
(2)

4.2. Adversarial Refining

The 𝒰 (+) and 𝒰 (−) mentioned in the above section are coarse-grained because a critical
mass of samples are placed into the mistaken set. Inspired by [30, 31], we apply adversarial
training to iteratively distill 𝒰 (+) and 𝒰 (−) and refine the classifier.

According to the predicted score in Eq. (1), we choose the samples in 𝒰 (+) whose scores
are higher than a threshold 𝜏 to construct a reliable set �̃� (+), and the remaining samples
in 𝒰 (+) and 𝒰 (−) to construct an unreliable set �̃� (−). As shown in Figure 2, we design a
discriminator and a sampler to conduct an adversarial min-max game. Given a sample
(𝑐𝑗, 𝑐𝑘), the discriminator aims to learn a score function 𝐷(𝑐𝑗, 𝑐𝑘) to judge whether it is from
�̃� (+) or �̃� (−), while the sampler learns a probability 𝑃𝑢(𝑐𝑗, 𝑐𝑘) for each sample of �̃� (−),
representing its chance of being a false negative. According to 𝑃𝑢, we select the most
confusing negative samples from �̃� (−) to cheat the discriminator. During training, the
generator provides large amounts of latent noisy samples to enhance the discriminator,
and the discriminator influences the generator to select the more informative samples.
We also dynamically select the most informative and reliable samples from the unreliable
set to the reliable set. During the adversarial refining process, we can enhance the
classification capability of the discriminator. Formally, the objective of the min-max game
can be expressed as

min
𝑃𝑢

max
𝐷

(𝐸(𝑐𝑗,𝑐𝑘)∼�̃� (+)[𝑙𝑜𝑔𝐷(𝑐𝑗, 𝑐𝑘)]

+ 𝐸(𝑐𝑗,𝑐𝑘)∼𝑃𝑢[𝑙𝑜𝑔(1 − 𝐷(𝑐𝑗, 𝑐𝑘))]).
(3)

Discriminator is transferred from the coarsely trained hypernymy classifier in Eq. 1:

𝐷(𝑐𝑗, 𝑐𝑘) = 𝜎(𝑟𝑐𝑗,𝑐𝑘 ⋅ 𝑟𝑐). (4)

which will be further refined with adversarial loss.
Sampler aims to select samples from �̃� (−) to cheat the discriminator according to 𝑃𝑢

which is calculated as,
𝑞(𝑐𝑗, 𝑐𝑘) = 𝑚 ⋅ 𝑟𝑐𝑗,𝑐𝑘 + 𝑑;

𝑃𝑢(𝑐𝑗, 𝑐𝑘) =
exp (𝑞(𝑐𝑗, 𝑐𝑘))

∑(𝑐 ̃𝑗,𝑐�̃�)∈�̃�
(−) exp (𝑞(𝑐 ̃𝑗, 𝑐�̃�))

.
(5)



where 𝑚 and 𝑑 are parameters.
By unfolding the min-max objective in Eq. 3, the adversarial loss for the discriminator

is as follows:
ℒ𝐷 = − ∑

(𝑐𝑗,𝑐𝑘)∈�̃� (+)

1
|�̃� (+)|

log𝐷(𝑐𝑗, 𝑐𝑘)

− ∑
(𝑐𝑗,𝑐𝑘)∈�̃� (−)

𝑃𝑢(𝑐𝑗, 𝑐𝑘) log (1 − 𝐷(𝑐𝑗, 𝑐𝑘)).
(6)

And the adversarial loss for the sampler is:

ℒ𝑆 = − ∑
(𝑐𝑗,𝑐𝑘)∈�̃� (−)

𝑃𝑢(𝑐𝑗, 𝑐𝑘) log𝐷(𝑐𝑗, 𝑐𝑘). (7)

As we treat instanceOf and subClassOf separately, and adopt adversarial training
for both of them, the holistic adversarial training loss functions for instanceOf and
subClassOf are:

ℒ 𝐼
𝐴 = ℒ 𝐼

𝐷 + 𝜆𝐼ℒ 𝐼
𝑆; ℒ

𝐶
𝐴 = ℒ𝐶

𝐷 + 𝜆𝐶ℒ𝐶
𝑆 . (8)

ℒ 𝐼
𝐷 andℒ𝐶

𝐷 are the discriminator loss functions for instanceOf and subClassOf respectively.
Similarly, ℒ 𝐼

𝑆 and ℒ𝐶
𝑆 denote the sampler loss functions. 𝜆𝐼 and 𝜆𝐶 are the weighting

factors.

4.3. Multi-task Learning

Besides distilling the training data and refining the classifiers through adversarial learning,
we further incorporate multi-task learning to enhance the hypernymy classifiers. The main
idea is that (1) InstanceOf Classification and SubClassOf Classification can mutually
enhance each other because instances and classes are highly correlated; (2) relational
facts about instances provide rich semantics which benefits Hypernymy Classification.
Specifically, we learn three sub-tasks, Knowledge Embedding, InstanceOf Classification,
and SubClassOf Classification simultaneously to integrate the instance-instance, instance-
class and class-class information flow.

For Knowledge Embedding, we introduce a knowledge graph 𝒢, which expresses data
as a directed graph 𝒢 = {ℐ ,𝒫 , 𝒯 }. ℐ, 𝒫 and 𝒯 indicate the sets of instances, predicates
and triples respectively. A score function 𝐾(ℎ, 𝑝, 𝑡) is learned to measure the plausibility
of (ℎ, 𝑝, 𝑡) being a legal triple, where ℎ, 𝑡 ∈ ℐ , 𝑝 ∈ 𝒫. In this paper, we utilize TransE [32]
as a representative, whose scoring function is 𝐾(ℎ, 𝑝, 𝑡) = −‖ℎ + 𝑝 − 𝑡‖ where ℎ, 𝑝, 𝑡 are
embeddings of instances and predicates. We utilize a hinge loss function ℒ𝐾, which is
calculated as,

ℒ𝐾 =∑(ℎ,𝑝,𝑡)∈𝒢∑(ℎ̃, ̃𝑝, ̃𝑡)∉𝒢

max (0, 𝛾 + 𝐾(ℎ, 𝑝, 𝑡) − 𝐾(ℎ̃, ̃𝑝, ̃𝑡))
(9)

where 𝛾 is a hyper-parameter denoting the margin.
Finally, the overall loss of multi-task learning is formalized as

ℒ = ℒ𝐾 + 𝛼1ℒ 𝐼
𝐴 + 𝛼2ℒ𝐶

𝐴. (10)



Here, 𝛼1 and 𝛼2 are two weighting factors. Specifically, instance embeddings are shared
by Knowledge Embedding and InstanceOf Classification. Class embeddings are shared
by InstanceOf Classification and SubClassOf Classification. By jointly optimizing the
shared parameters, we can fully integrate the connections among instances and classes
and enhance the hypernymy classifiers.

4.4. Model Training

First, we optimize the loss function ℒ𝐶 in Eq. (2). Then, we use the coarsely trained
model and hyper-parameter 𝜏 to construct �̃� (+) and �̃� (−) for adversarial training. In
practice, we share the parameters of the classifier (Eq. (2)) and discriminator (Eq. (6))
to warm up the adversarial training process. Then, we optimize the multi-task learning
loss function in Eq. (10). ℒ 𝐼

𝐷 and ℒ 𝐼
𝑆 are optimized alternately, with 𝜆𝐼 integrated into

the learning rate of ℒ 𝐼
𝑆 to avoid adjusting. ℒ𝐶

𝐷 and ℒ𝐶
𝑆 take the similar optimization

strategy. Instead of directly updating ℒ, we optimize ℒ𝐾, ℒ 𝐼
𝐴 and ℒ𝐶

𝐴 alternatively.

5. Experiments

5.1. Datasets

As far as we know, previous datasets for TDWCN are all small datasets. For example,
as shown in Table 1, the datasets in MultiTax contain only about 200 articles and
200 categories. For better evaluation, we create a large-scale English evaluation dataset
ENT5k. Specifically, we use a 2018 snapshot of Wikipedia, select 7,000 articles and 7,000
categories from its WCN and then annotate whether articleOf and subCategoryOf of
sampled WCN are hypernymy or not. Each articleOf or subCategoryOf is allocated to 5
highly-educated crowd-workers2. Only the ones consented by more than 4 crowd-workers
are kept to assure quality. Instead of selecting categories randomly, we consider both the
abstract ones such as “(Learning, Education)” and the specific ones such as “(American
Male Painters, American Painters)”, and select categories to cover diverse areas such as
people, society, geography, etc. Finally, ENT5k contains 5,989 articles, 5,983 categories,
27,696 articleOf and 19,857 subCategoryOf. As for the annotated results, for articleOf,
the incorrect relations make up 3.0% and for subCategoryOf, the incorrect make up
24.8%.

5.2. Baselines

As far as we know, our model is the first weakly-supervised method. We compare our
method with the following rule-based and supervised methods:
Heads [11], a rule-based method only designed for English.
MENTA [13], a rule-based method, links WordNet and Wikipedia of different languages

into a single taxonomy using heuristic rules.

2Inter-annotator agreement (Cohen’s Kappa) is 0.72



Table 1
The statistics of Wikipedia dump and evaluation datasets.

Language Article Category ArticleOf SubCategoryOf

Wikipedia dump

English 5,139,414 13,80,351 25,841,897 3,416,766
French 2,033,360 372,208 6,661,384 814,539
Italian 1,406,807 361,728 2,394,169 683,477
Spanish 1,483,920 365,611 4,566,147 815,055

Evaluation datasets

ENT5k 5,989 5,983 27,696 19,857
French 200 187 862 430
Italian 200 184 1225 382
Spanish 200 200 706 438

Table 2
P* of the original WCN.

Language articleOf subCategoryOf

English 97.0% 75.2%
French 72.0% 78.8%
Italian 74.5% 76.2%
Spanish 81.4% 80.9%

MultiWiBi [10], a rule-based method, induces taxonomies for English, and then transfers
them to other languages using heuristic rules and inter-language links.

MultiTax [12], a supervised method, given an English taxonomy as a source taxonomy,
first constructs a supervised dataset for the target language using inter-language links and
then trains binary classifiers. MultiTax is not designed for inducing English taxonomy.
Instead, it takes the existing English taxonomy as input.

5.3. Model settings and Evaluation Metrics

We use pretrained 50-dimensional Glove [33] for English and 300-dimensional fasttext [34]
for other languages. For knowledge graph in ℒ𝐾 (Eq. (9)), we employ Wikidata [35] which
is closely related to WCN. The optimizer is selected through a grid search over {Adam,
Adagrad, SGD}. The learning rate is selected over {0.1, 0.01, 0.001}. The threshold 𝜏𝐶 for
subClassOf and instanceOf are selected over {0.1, 0.2, ⋯, 0.9}. The margin for Knowledge
Embedding is selected over {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}. Finally, the optimizers for ℒ𝐶

𝐷,
ℒ𝐶

𝑆 , ℒ 𝐼
𝐷, ℒ 𝐼

𝑆 and ℒ𝐾 are Adam, Adam, Adagrad, Adagrad and SGD respectively. The
learning rate for them are 0.001, 0.001, 0.01, 0.01 and 0.1 respectively. The threshold 𝜏𝐶
for subClassOf and instanceOf are both 0.9. The margin 𝛾 for Knowledge Embedding is 1.0.
The hidden size and sliding window size for CNN are 50 and 3 respectively. MultiWiBi for
non-English languages, MENTA and MultiTax results are evaluated by [12]. Theoretically,



for comparison on English for MultiWiBi and Heads, it is best that we use the evaluation
dataset of the corresponding old version. However, 2012 and 2015 snapshots of Wikipedia
are not available (e.g., https://dumps.wikimedia.org/enwiki/ does not maintain the old
versions of Wikipedia.). Therefore, it is a compromise that Heads and MultiWiBi for
English are evaluated based on ENT5k and their published taxonomies. For French,
Italian and Spanish, we use the small datasets with only 200 articles by [12]. For English,
we use ENT5k. The results of MENTA and MultiTax are not evaluated for English
because: (1) MultiTax is not designed for English. (2) For MENTA, the codes are not
public and we can not reproduce them because lots of details are missing in the papers.
For a fair comparison with the baselines, we follow the evaluation metrics used in

MultiWiBi [10]: (1) Macro-precision (P*), the average ratio of the correct hypernyms to
the total number of hypernyms returned (per node in taxonomies); (2) Recall (R*), the
ratio of the nodes for which at least one correct hypernym is returned; (3) Coverage (C),
the ratio of the nodes with at least one hypernym returned irrespective of its correctness.
Note that (1) P*, R* are different from the conventional precision and recall; (2) F1
calculation of P* and R* is meaningless; (3) The R* and C of the original WCN are
100%. The P* of the raw WCN is shown in Table 2 according to the annotated evaluation
datasets.

Table 3
Precision (P*), recall (R*) and coverage (C) scores. The top 2 results are in bold. The best among
ours and rule-based methods are also underlined.

Language Methods instanceOf subClassOf

P* R* C P* R* C

English Heads 21.9 52.0 69.8 44.0 60.8 53.7
MultiWiBi 84.1 79.4 92.6 39.4 63.9 71.7

Ours 97.6 97.6 100 85.5 85.5 100

MENTA 81.4 48.8 59.8 82.6 55.0 65.7
French MultiWiBi 84.5 80.9 94.1 80.7 80.7 100

Ours 84.6 84.0 100 94.1 94.1 100

MultiTax 88.0 91.7 100 93.9 95.1 100

MENTA 79.7 53.2 66.7 77.1 25.4 32.8
Italian MultiWiBi 80.1 79.4 96.3 89.7 89.0 99.2

Ours 83.2 83.2 100 84.9 84.9 100

MultiTax 92.6 97.2 100 89.2 90.9 100

MENTA 81.0 42.9 52.7 80.5 54.2 66.4
Spanish MultiWiBi 87.0 82.0 93.7 84.8 84.4 100

Ours 85.7 85.7 100 94.9 94.9 100

MultiTax 93.4 96.3 100 92.9 95.1 100

https://dumps.wikimedia.org/enwiki/


5.4. Evaluation Results

Table 3 shows the overall performance. From the table, we can observe that:
(1) For English, our model distinguishes the non-hypernymy from the original WCN

and improves P* by a large margin. It also surpasses Heads and MultiWiBi significantly,
which indicates that our neural model can outperform the rule-based method.

(2) For the non-English languages, our method significantly outperforms the rule-based
models. Even compared with the supervised model, our weakly-supervised model provides
comparable performance. Especially for subClassOf, it even outperforms MultiTax slightly
in French and Spanish, indicating that weakly-supervised methods are promising and
worth exploring in the future.

(3) Our model performance for instanceOf is worse than that for subClassOf. A
possible reason is that infrequent instances cannot learn a good representation due to
data sparsity. As described in Section Coarse Pretraining, categories are represented by a
textual encoder, but most of the instances (e.g., “Donald Duck”) are named entities whose
semantics are beyond the word sequence can describe. Instead, instance embeddings are
randomly initialized and further learned from the knowledge graph 𝒦 by Knowledge
Embedding. However, as previous study shows [36, 37], the frequency of instances follows
a pow-law distribution and most of the instances are infrequent, which cannot learn a
good representation and further harm InstanceOf Classification. A reasonable solution is
to utilize instance descriptions, which will be our future work.

As shown in Table 2, the original WCNs for different languages vary a lot. For French,
only 72.0% articleOf are correct, yet for English, 97% are correct. For English, improving
InstanceOf Classification is not easy but necessary because more than 25 million articleOf
exist in WCN and the number of invalid articleOf is 750k, which will harm SubClassOf
Classification due to error propagation.
Note that we propose the language-independent method to avoid excessive manual

rules and corpus labeling in the language-dependent method. Our focus is on reducing
costs and improving generalization ability, rather than claiming that our experimental
results are definitely better than theirs. Therefore, in the experiment, compared to
language-dependent methods (which are based on manual rules or corpus annotations),
our model can achieve comparable results and be applied generally to different languages
without rules or annotations, showing the benefits of our method.

6. Conclusion
In this paper, we propose a language-independent model for TDWCN, which (1) designs
an adversarial learning approach to distill hypernymy relations from noisy raw Wikipedia
without the limitation of language dependencies; (2) incorporates multi-task learning to
integrate the information flow among instances and classes. In addition, we contribute a
large-scale evaluation dataset with 27k articleOf and 19k subCategoryOf for TDWCN.
Experimental results on 4 different languages demonstrate that our model can be applied
generally to different languages and achieve better or comparable performance compared
with previous language-dependent approaches.
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